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1. Introduction

Studies of industrial markets continue to find that a substantial amount of the differences in
output across sectors and regions can be attributed to differences in allocative efficiency.1 Yet,
virtually no such analysis exists for the market for scientific research.2 A long line of work has
shown that frictions in science exist, whereby certain researchers are denied resources for
reasons plausibly unrelated to their productivity (Merton 1973; Zuckerman 1988; Shapin 1995;
Azoulay, Fons-Rosen, and Graff Zivin 2019; Hager, Schwarz, andWaldinger 2024). But we have yet
to quantify how much these frictions are slowing down scientific progress. This is unfortunate
given the large role that science plays in driving economic growth.3

Our limited view of efficiency in science stems from the challenges of estimating individual
researchers’ productivity. Most notably, the output of science, “knowledge” (Arrow 1962), is
difficult to quantify. In the century since Lotka (1926) first used publication counts to proxy
for units of knowledge, few advances have been made outside of bibliometric data. This is
despite Adams and Griliches’s (1998) note that, “what constitutes a scientific paper makes for an
elastic yardstick of scientific achievement.” In this paper, our goal is to avoid proxies altogether and,
instead, estimate researchers’ productivity without ever observing the quantity of knowledge
they produce.

Howmight we estimate productivity in the absence of output data? The factor-share approach
provides one way forward (i.e., De Loecker and Syverson 2021). It is assumed that producers are
cost minimizers and face no adjustment costs when choosing their input levels. This implies a
factor’s input cost share reflects its output elasticity. However, the two scientific inputs that we
are interested in, researchers’ funding and their time spent on their research, are not allocated
via price mechanisms and likely involve adjustment costs. Thus, the construction of factor
shares and the mapping to productivity parameters is not straightforward.

To overcome these challenges, we develop a methodology for estimating productivity that does
not require output quantities, does not require inputs to be explicitly priced, and directly incor-
porates adjustment costs. Our approach allows us to recover the distribution of researchers’
productivity beliefs, which are very skewed, and quantify the value from more efficiently al-
locating inputs, which is very large. While we tailor our method to estimating productivity in
academic science, the general approach provides a path forward for productivity estimation
in settings with many heterogeneous producers (e.g., individual workers) who are obtaining
inputs that are not explicitly priced and generating output that is difficult to observe.

1For example, see: Hsieh and Klenow (2009); Syverson (2011); Restuccia and Rogerson (2013); Hopenhayn (2014).
2The closest examples we are aware include Adams and Griliches (1998); Wang and Huang (2007); Rosenbloom

et al. (2015), and Qiu (2023), but these evaluations of efficiency are quite indirect.
3For theoretical motivation, see Jones (2005); and for empirical work, see, for example: Jaffe (1989); Adams (1990);

Mansfield (1998); Popp (2017); Valero and Van Reenen (2019); Hausman (2022); Andrews (2023).
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The logic of ourmethod is the same logic as the factor-share approach: producers’ input demand
reveals information about their productivity. However, the specific way in which we apply this
logic is unconventional. The following simple example illustrates our method:

Profit maximizing producers are indexed by i. Output (Y ) is produced using a single
variable input (X) per the production function: Yi = αiXi, where αi is the focal
productivity parameter. Producers are price-takers and face a common output price
(p > 0). Input costs are heterogeneous and convex as given by: Xcii , where ci > 1.

Consider the period before producers have obtained their inputs inside the market;
call this the pre-production period. In the pre-production period, assume we can
observe or estimate producers’ expectations about the price of output (p). We cannot
observe their productivity or cost parameters (αi, ci), and we can never observe
output (Yi) even after production occurs. Our goal is to estimate productivity (αi).4

Our solution is to solicit producers’ willingness to pay (WTPi) to obtain a fixed
quantity of input in the pre-production period from outside the market (e.g., from
us, the experimenters). Consider an experiment where producers are asked to re-
port their WTP to obtain 1 unit of X in this way. Producers’ WTP will equate their
profits inside the market whether or not they purchase the 1 unit of X in the pre-
production period. Formally, their WTPi should make the following equality hold:
maxXi [pαiXi −X

ci
i ] =maxXi [pαi(Xi + 1) −X

ci
i −WTPi].

This yields a simple expression for identifying producers’ productivity that does not
require output quantities or input prices: αi =WTPi/p.

The canonical setting of this example is one of manufacturing firms using labor and capital
to produce physical goods that generate revenue via prices in the product market. But the
underlying concept applies to science as well: researchers use their funding and time to produce
knowledge that generates utility via the incentive structures of science. And just as a firm’s
willingness to pay for inputs reveals their belief about how productively they can generate
physical goods, a researcher’s willingness to pay for scientific inputs reveals their belief about
how productively they can generate knowledge.

In order to apply this method to the market for science, we first develop a new model of re-
searchers’ production and consumption decisions. Researchers derive utility from three sources:
their salary, their scientific output (i.e., the quantity of knowledge they produce), and their
leisure time. Researchers choose how to allocate their time across fundraising (e.g., writing
grants), research, and leisure given their beliefs, budgets, and constraints.5 Each researcher has

4Note that, even if we could also observe or estimate producers’ expected input choice, X∗i , then the first order
condition, X∗i = (pαi/ci)

1/(ci−1), still does not separately identify the productivity and cost parameters (αi, ci).
5To capture heterogeneity in researchers’ payoffs and preferences, we allow some functional forms to depend on
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a unique production function with constant returns to scale, defined by two researcher-specific
parameters: (i) a funding-intensity parameter that determines the relative weight of the two key
inputs, funding and time, and (ii) a total factor productivity (TFP) parameter that describes the
efficiency with which researchers produce scientific output using their inputs.

Using the model, we can write a researcher’s willingness to trade off their salary for inputs as a
function of their productivity beliefs. This trade-off mirrors real decisions researchers make in
the job market, and it forms the basis of the experiments that provide the variation necessary to
identify the model’s parameters. By identifying researchers’ input demand via their WTP, we
can handle the fact that inputs are not explicitly priced. Moreover, since the survey also solicits
researchers’ actual input levels, we can still estimate researchers’ scientific output despite the
fact that we never need to observe the knowledge they expect to produce. Throughout the paper,
we highlight several important limitations to our general approach and the specificmodel.

In order to generate the data necessary to estimate the model, we make use of a nationally
representative survey of research-active professors across all major fields of science at roughly
150 major institutions of higher education in the US; for details, see Myers et al. (2023).6 The
survey solicits researchers’ salaries, time allocations, and access to inputs. Importantly, the
survey also includes a series of hypothetical experiments that solicit researchers’ willingness to
trade off their salary for more research funding or fewer administrative duties.

Researchers’ willingness to pay for inputs are of plausiblemagnitudes and behavior. Themedian
researcher is willing to pay 10 cents for $1 of research funding and $68 for one less hour of
administrative duties. The components of the model explain a large fraction of the variation
in researchers’ responses (82–96%) and, for the most part, responses do not appear to reflect
sample selection or systemic noise in respondents’ willingness to pay for any hypothetical good.
Furthermore, researchers’ willingness to pay for free time is strongly correlated with their
implied hourly wages as expected.7

Our estimates of productivity beliefs vary widely across researchers, even after accounting
for outliers. Within major fields of study, the ratio of the 90th and 10th percentile of TFP is
approximately 52. When we look in narrower fields of study and attempt to control for other
sources of heterogeneity, we estimate 90–10 TFP ratios to be approximately 29. This represents a
high degree of dispersion compared to what is observed in commercial markets at the firm-level
(e.g., Syverson 2011); however, this scale of dispersion in productivity across individual workers
has been observed in some high-skilled settings (e.g., Sackman, Erikson, and Grant 1968). As a

individuals’ observable features.
6Evidence is provided in Myers et al. (2023) suggesting the presence of non-response bias in the sample is very

low on observable dimensions such as institutional rank and researcher-level variables such as grant funding and
publication rates; some of this is reprinted in the Appendix. The survey recruitment included randomized incentives
and reminders, which we use to test for sample selection per Heckman (1979) and find no evidence for it.

7We also implement Dizon-Ross and Jayachandran’s (2022) approach of using a “benchmark good” as a part of
our willingness-to-pay elicitation to test whether respondents exhibit systematic noise in their stated preferences.
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sign of face validity, our productivity estimates are positively correlated with common metrics
of knowledge production (e.g., publications, citations, grant funding) and exhibits a similar
degree of dispersion as those metrics. Notably, our estimates indicate that approximately half
of the variance in scientific output across individual researchers is due to variance in their
productivity.8 Together, these results suggest that it may be hard for the market for science to
facilitate positive selection on productivity.

To evaluate allocative efficiency, we compare inputs and outputs under actual allocations to those
under alternative allocations. Specifically, we consider two alternative objectives: (i) maximize
total scientific output, or (ii) maximize researchers’ private utility. Using themodel, we can solve
for the allocation of inputs that achieves an objective while allowing for researchers’ behavioral
responses as they re-optimize their choices.9

Overall, we find evidence of a moderate degree of efficiency given our proposed objectives. The
correlations between researchers’ actual input levels and the optima implied by our model gen-
erally span 0.4–0.8; more productive researchers acquire more inputs on average. However, are
still significant gains from alternative allocations. Our counterfactuals suggest that total annual
scientific output could be increased by approximately 160%. The private value to researchers of
this additional output is on the scale of 5%. Estimating the social value of this growth requires
assumptions about externalities, which we explore.

To provide another way of characterizing the gains from reallocation, we ask the following: how
muchwould funding levels need to increase under actual allocations to produce the same growth
in output as our alternative allocations that hold input levels fixed? We find that total annual
funding levels would need to increase roughly 40% in order to achieve the same 160% growth in
output our alternative allocations can achieve. Even conservative approaches to scaling these
estimates up to the size of the population can imply gains from reallocation that are equivalent
to multi-billion dollar increases in annual research funding.

We also evaluate the degree to which differences in aggregate output across major fields of
study are due to differences in the number of researchers, their productivities, their input
levels, or the fields’ allocative efficiency. Overall, differences in allocative efficiency are the
largest determinant of differences in aggregate output. At efficient allocations, the gaps in output
between fields shrink by 20–50%.

Lastly, we unpack the counterfactuals to explore the following questions: Is the efficient allo-
cation of inputs implied by the model more or less concentrated than the actual allocation?
How does the reallocation of each input (i.e., funding and time) independently change the

8We are unable to distinguish the degree to which the “productivity” we estimate reflects an individual’s fixed
capabilities as a researcher versus any cumulative advantage they have acquired (c.f., Hall and Mairesse 2024).

9We use a number of constraints in order to keep our counterfactuals within the support of the data we observe
and plausible in nature.
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results? How much does the efficient allocation change under different objectives? What is
the distribution of input wedges (i.e., the difference between their optimal and actual input
levels) across researchers? Are researchers’ input wedges predictable given their observable
features?

Our estimates comewithmany caveats due to the limitations of ourmethod and setting. First, we
face a set of challenges common to all existing productivity estimation techniques: (i) noise due
tomis-measurement ormis-specificationwill lead us to overstate the degree ofmisallocation; (ii)
the presence of unmeasured inputs will inflate the productivity estimates; and (iii) the presence
of unmodeled heterogeneity in output prices (or preferences) will distort the productivity esti-
mates. Second, we face a set of limitations unique to our methodology and data: (i) our method
provides only ex-ante productivity beliefs and has no way of identifying ex-post differences in
production; and (ii) the identifying variation in our data is based on stated preferences from
hypothetical experiments, which may suffer from a range of biases. Throughout the paper we
engagewith these limitations by providingmultiple robustness tests of our assumptions and face
validity tests of the data. Overall, the results from these tests give us confidence in our approach.
Still, we interpret our results as plausible upper bounds on the productivity dispersion and gains
from reallocation in science. Given the lack of quantitative evidence on these points, we view
this work as an important step towards understanding resource allocation in science.

The structure of the paper is as follows: Section 2 details the survey data; Section 3 describes our
model of researchers’ production and consumption; Section 4 describes the survey experiments
where we ask scientists to trade off their salary for inputs and reports the results of those
experiments; Section 5provides the productivity estimates; Section 6 contains our counterfactual
allocation exercises and explorations thereof; and Section 7 concludes with a discussion about
our results specifically and the potential usefulness of our methodology more generally.

2. Survey and Data Overview

2.1. Survey Design

We use the National Survey of Academic Researchers (Myers et al. 2023) and provide below a
brief overview of the survey methodology here. The population target is US professors who
conduct research at major institutions of higher education. To construct the sampling frame,
information on professors was collected from the 158 largest institutions in the US by total R&D
funding using the National Science Foundation’s 2019 Higher Education R&D survey (HERD;
National Science Foundation 2023).

The population consisted of 264,036 unique e-mails. A total of 131,672 individuals were e-mailed
and 4,388 (3.33%) completed the survey.10We then restrict the sample to the 4,003 individuals

10The IRB approval permitted e-mailing only 50% of the population. The response rate is more than twice what has
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(91.2% of respondents) who reported being a professor, spending a non-zero amount of time on
research, and having a non-zero salary from their primary institution.

During recruitment, incentives and reminders were randomly assigned. The four incentive
arms were: (i) no incentive, (ii) entry into a lottery to win a gift card, (iii) the ability to vote for a
set of charities to receive a donation, and (iv) both the second and third incentives. The reminder
arms were zero, one, or two reminders. Each email was randomly assigned to one incentive arm
and one reminder arm with equal probability, resulting in twelve possible combinations.

The randomized incentives and reminders provide us with instruments that we can use to
implement a sample selection correction (i.e., Heckman 1979). The validity of this approach
relies on having variables that cause entry into the sample (i.e., completing the survey) but
do not affect the outcomes of interest. This allows us to adjust for unobservable differences
between the population and our sample. Appendix Table A1 reports the results from a regression
of an indicator for survey completion on the different incentive and reminder arms, and it shows
that all arms had a statistically significant positive effect on researchers’ propensity to complete
the survey.

In addition to adjusting for unobservable differences, Myers et al. (2023) also check the repre-
sentativeness of the respondent sample by comparing it to the invited sample on observable
characteristics. First, the authors explore a series of observable characteristics at the researcher-
level by comparing the grant and publication histories of respondents and non-respondents
using the Dimensions database (Digital Science 2018), which collects and disambiguates sci-
entific metrics for researchers worldwide.11 Appendix Figure A1 (replicated fromMyers et al.
(2023)) shows invite-respondent overlap on various measures of scientific inputs and outputs.
Overall, there is little difference in the respondents and non-respondents both economically
and statistically speaking.

Looking at the institutional level, Appendix Figure A2 (replicated fromMyers et al. (2023)) shows
invite-respondent overlap on various measures of institution funding derived from the HERD
survey. As in the case of the researcher-level comparison, the distributions overlap substantially.
In this case, there is some statistically significant difference; on average, respondents come
from institutions with slightly less research funding (4–6%).

2.2. Summary Statistics: Researchers and their Inputs

Table 1 reports the summary statistics of the key covariates used in our analyses.

been obtained from sourcing academic researcher contacts from the corresponding author data contained within
the publication record (e.g., Myers et al. 2020).

11Using a fuzzy name matching process, Myers et al. (2023) are able to confidently match 87,000 (66%) of the
researchers to their records in Dimensions.
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Fields of Study. Using the description of the professor’s department, we assign them first to a
narrow set of twenty “minor” fields of study and then aggregate those fields into five broader
“major” fields: humanities and related; engineering, math, and related; medicine and medical
sciences; natural sciences; and social sciences. Appendix Table A2 reports the distribution across
the twenty minor fields. Unless otherwise noted, our counterfactual analyses will constrain the
reallocation of inputs to only occur within the major fields.

Salaries and Research Inputs. The survey solicits a range of details regarding researchers’ salary,
their guaranteed funding (e.g., from prior grants or institutional guarantees), expected funds
they will raise over the coming five years, and their time allocations. Importantly, most variables
are elicited as expectations over the coming five years to ensure the responses span the same
time horizon as the thought experiments described below. In the Appendix, we replicate a
test of respondents’ self-reporting by comparing their self-reported salaries to the publicly-
reported salaries we are able to locate for a subset of researchers. Overall, there is a high degree
of alignment (see Appendix Figure A3). Appendix Figure A4 plots full distributions of work
time across each task, and Appendix Figure A5 plots full distributions of researching funding
across the major fields for further detail. While there certainly is more research funding in
traditionally capital-intensive fields (e.g., the natural sciences), there is a significant proportion
of researchers in each major field with substantial research funding levels.

Position and Socio-demographics. Appendix Tables A3–A4 provides a full summary of all other
major features collected regarding researchers’ positions (e.g., rank and tenure status) and their
socio-demographics (e.g., gender, race/ethnicity, citizenship). See Myers et al. (2023) for a more
detailed investigation of these summary statistics.

2.3. Summary Statistics: Subjective Output Measures

Our methodology for estimating productivity is explicitly designed to avoid the need to quan-
tify the output produced by researchers’ efforts. Still, it is useful to have a more qualitative
understanding of what researchers are producing. Fortunately, the survey includes a number
of subjective questions regarding researchers’ output. Table 2 summarizes answers to these
questions, which asked the frequency with which researchers intended to produce outputs
of certain types (e.g., articles, books, materials, products) for certain types of audiences (e.g.,
peers, policymakers, businesses, general public) as well as other measures of riskiness and
the degree to which the researcher focused on asking new questions or answering existing
questions.

The traditional proxy for scientific output is peer-reviewed journal articles, and the data indicate
that this is the most common output type that researchers intend to produce. However, there
is a considerable amount of variation and a significant amount of attention focused on pro-
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ducing output of types and for audiences that may never be codified in a journal article. More
importantly, these measures are often negatively correlated in a way that suggests strategic
substitution (see Appendix Table A5). For instance, researchers who focus more on publishing
articles for their academic peers are less likely to focus on publishing books or developing
products intended for non-academic audiences. This highlights the limitation of observable
output proxies.

3. Model of Science

In this section, wemodel researchers’ labor supply, which describes their utility fromproduction
and consumption. First, we present the environment and researchers’ optimal decisions (Sub-
section 3.1). Then we incorporate externalities in production to define social welfare (Subsection
3.2) and highlight the connection between the model and the survey thought experiments that
solicit researchers’ willingness to pay (WTP) for different factors (Subsection 3.3). Lastly, we
outline our estimation approach (Subsection 3.4). Additional details regarding the model and
estimation are contained in Appendix B.

3.1. Researchers’ Labor Supply

There areN researchers indexed by iwho each choose howmuch total time to work (Hi) and how
to allocate their time between research Ri and fundraising Fi over a fixed horizon. Their choices
maximize their utility conditional on a contract from their primary institution, which is a triplet
of state variables Si = (Mi,Gi,Di): salaryMi ($), guaranteed funding Gi ($), and administrative
and teaching duties Di (hours).12 Researchers’ indirect utility is given by:

V(Si , θi , µi) = max
Ri ,Fi ,Hi

U1i(Mi) +U2i(Yi) −U3i(Ri , Fi , Di)(1a)

subject to

Bi = Bmin + Gi +ϕiFi(1b)

Ri + Fi +Di = Hi(1c)

Yi = αiB
γi
i R

1−γi
i ,(1d)

where θi = (αi , γi , ϕi) is the vector of individual-specific attributes related to scientific activity
and µi is a vector of parameters that govern the shape of the U functions.

The quantity of knowledge Yi that researchers produce is a Cobb-Douglas function of total
funding Bi and research time Ri, which includes researcher-specific productivities (αi) and
output elasticities (per γi). Additionally, we assume a minimum funding amount Bmin, and that

12We use the term “contract” loosely, since, for example, a researcher’s guaranteed funding may come in part from
future flows of funding from grants obtained outside the institution.
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all work hours are non-negative and have an upper bound Hmax.

Utility from salary, output, and effort are given by the following functional forms:

U1i(⋅) =ω
(Mi)1−σi
1 − σi

(2a)

U2i(⋅) =
(Yi)1−ηi
1 − ηi

(2b)

U3i(⋅) = ψ
(Ri + Fi +D

ξi
i )

1+ζi

1 + ζi
.(2c)

The vector µi collects the parameters (ω,σi,ηi,ψ,ξi,ζi).13

The policy functions R(Si,θi,µi), F(⋅), andH(⋅) characterize the solutions to Equation (1). For
each individual researcher, these policies determine optimal (R∗i ,F

∗
i ,H

∗
i ) as a function of states,

attributes, and parameters. The derivations of these policy functions are described in Appendix
B.1.

Ideally, we would have enough variation to estimate all researcher-specific attributes including
the production-related parameters (αi,γi,ϕi) as well as all of the consumption-related parame-
ters that govern researchers’ utility from salary, output, and effort (σi,ηi,ξi,ζi). However, as
shown below, we only have enough variation in the survey experiments to uniquely identify the
production-related parameters (αi,γi,ϕi). Thus, we choose to specify each of the consumption-
related parameters to be a parametric function of researchers’ observable features.

Fortunately, we have a large vector of observable features (Xi) that describe researchers’ posi-
tions, their backgrounds, and their subjective descriptions of their scientific output (i.e., the
features summarized in Table 2 and Appendix Tables A3–A4). This is useful because it allows us
to incorporate more heterogeneity into the consumption components of themodel and limit the
degree to which variation in the data might otherwise cause us to overstate the heterogeneity in
the production parameters.

Unfortunately, the computational demands of estimating the model limit the flexibility with
which we can incorporate the dozens of features available. Thus, to balance the benefits of
allowing for heterogeneity in consumption with the benefits of simpler estimation, we use k-
means clustering to reduce the full set of observable features (Xi) into a one-dimensional index.
We assume there are two clusters of researcher types (k = 2) and estimate each researcher’s
distance from these clusters per their Euclidean similarity score. This distance provides a one-
dimensional description of all of the different ways researchers responded to questions that
could plausibly be driven by heterogeneous preferences.

13The ξi parameter allows for additional disutility from duty-related work (e.g., administration or teaching), which
improves the model’s fit to the data. We also assume the following: ηi ∈ (0, 1), ψ > 0, ξi > 0, and ζi > 0.
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We refer to this resulting index as describing researchers’ type, Ti, Appendix B.2 reports the
results of the k-means estimation showing the distribution of researcher type T in the sample as
well as a view of the mean differences in the features of researchers per their type.

We then specify each of the consumption-related parameters (σi,ηi,ξi,ζi) to be simple, uni-
variate functions of researcher’s type. For instance, the parameter that governs the utility from
private consumption is parameterized as: σi = exp(δ0 + Tiδ1). We similarly parameterize ζi and
ξi with exponential functions with intercept and slope, respectively. The curvature of utility in
scientific output, ηi, is modeled with a logistic function bounded in the interval (0, 1). Therefore,
we express individual-specific parameters µi(Ti, µ̃) as a function of researcher’s type Ti and of
the vector of common parameters to be estimated, denoted by µ̃ = (ω,ψ,δ), where δ includes
the deep parameters that govern the utility functions.

Allowing the µi parameters to be type-specific is not a panacea, but it helps reduce the degree
to which variation in the experimental data that is truly driven by heterogeneous preferences
or heterogeneous demand for scientific output contaminates our productivity estimates. We
further detail the estimation process below.

3.2. Social Value

To incorporate the externalities of knowledge production (e.g., Nelson 1959; Arrow 1962), which
we assume to be net positive, we define the social value produced by each researcher as:

(3) W(Si , θi , µi , κ) = U1i(Mi) + κU2i(Y∗i ) −U3i(R
∗
i , F

∗
i , Di) ,

where researchers’ privately optimal choices and output are given by R∗i , F
∗
i and Y

∗
i . κ reflects

the size of the externalities associated with researchers’ output. Thus, 1/κ gives the share of the
social value generated by each researchers’ output that they themselves capture and 1 − 1/κ is
the size of the positive externality.

This formulation of externalities is an ad hoc way of implicitly modeling consumer surplus as
some constant multiple of producer surplus. However, it has a clear economic interpretation
as a measure of appropriation, and we can draw on prior studies that have sought to identify
precisely this measure. Studies that focus on commercial innovators have found producers’
value capture to be as large as 15% (κ = 6.7) and as low as 2% (κ = 50) (Nordhaus 2004; Philipson
and Jena 2006; Jena and Philipson 2008; Lakdawalla et al. 2010). In our empirical analyses,
our baseline assumption is κ = 10, which implies researchers capture 10% of the social value
they create.14 Interestingly, as we will show below, the median researcher is willing to pay
approximately 0.1 dollars to purchase 1 dollar of research funding, which is a magnitude that is
consistent with our assumption that κ = 10.

14Note also that this approach implies that researchers’ private utility reflects the case where κ = 1.
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3.3. Input Demand and Productivity

This subsection illustrates how our model can generate predictions about a researcher’s willing-
ness to pay (or accept) for more (or less) inputs than what existing allocation schemes would
lead them to obtain.

Consider the period prior to production but after which researchers have formed their expec-
tations about their time allocations and, therefore, their expectations about their utility over
the 5-year horizon. Now, researchers are offered some alternative contracts by their primary
institution that vary either funding guarantees (G → G̃) or administrative duties (D → D̃), but
leave the salary unspecified.

For each offer indexed by j and characterized by (G̃i j , D̃i j), there is a salary (M̂i j) that makes the
researcher indifferent between their actual contract (Mi , Gi , Di) and the offer such that:

(4) Vi ≡ V(Mi , Gi , Di , θi , ...) = V(M̂i j , G̃i j , D̃i j , θi , ...) .

Importantly, V(⋅) incorporates behavioral responses such that:

R(Si , θi , ...)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
expected research
time in actual
position

⋛ R(S̃i j , θi , ...)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
expected research
time in alternative

position

where and likewise for F(⋅) and H(⋅); researchers evaluate their net indirect utility in the
alternative position after they will have re-optimized their time allocations given the new state
variables.15

For example, if a researcher is offeredmore guaranteed funding (Gi < G̃i j) then they will forecast
how this additional funding will lead to changes in their optimal time allocations, their expected
input levels, their expected output levels (per their productivity beliefs), and their expected
indirect utility. The total increase in their expected indirect utility can be priced by the researcher
and stated as a new, lower salary (Mi > M̂i j).

Importantly, we can write that alternative salary (M̂i j) that makes researchers indifferent be-
tween their actual position and the offer to be some function of known variables and the
unknown parameters to be estimated:

(5) M̂i j = Π(G̃i j , D̃i j , Mi , Gi , Di , θi , ...) ,

where Π is determined by functional forms of, and optimality conditions implied by, Equation
(1). Thus, if we know the left-hand side of Equation (5) from some experimental offers, and

15Or put alternatively, R̃∗i j ⋛ R
∗

i , F̃
∗

i j ⋛ F
∗

i , and H̃
∗

i j ⋛ H
∗

i .
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we also know all components of Π except for the parameters, then we can estimate those
parameters.

3.4. Estimation

We infer individual attributes and parameters jointly, using a mix of calibration and estima-
tion. First, we set minimum funding Bmin = $5, 000 and fix total hours endowment Hmax to
62 work hours per week (approximately the 90th percentile of the observed work hours). Sec-
ond, we estimate individual attributes and common parameters of the utility function, in-
cluding deep parameters that determine individual-specific parameters in µi as functions of
researcher’s type Ti. Specifically, we use survey information on declared hours worked, research
time, fundraising time, guaranteed funding, expected additional funds raised, duties, and the
salaries reported in the alternative offer experiments, which we map to model counterparts
(Hi,Ri , Fi , Gi , ϕiFi , Di , {Mi j}4j=1), respectively.

Appendix B contains the full details on our estimation routine, which we briefly outline here.
Conditional on some common parameters, we can infer individual-specific attributes θi from
researchers’ optimality conditions and model’s structure. Therefore, we first describe this map-
ping, and then we proceed to present estimation of the common parameters. One important
note is that we have separate estimation strategies for inferring individual attributes θi among
researchers with non-zero fundraising time (Fi > 0) and those at a corner solution (Fi = 0).

For the former group, we first infer fundraising ability ϕi by exploiting the identity equating the
observed, expected additional funding (EGi) to ϕiFi. Therefore, ∀i = 1, ...,NF :

(6) ϕ̂i =
EGi
Fi

.

Expression (6) is well-defined if and only if observed Fi > 0, which motivates why the inference
strategy must differ for researchers with Fi = 0 at observed allocations.16 As a second step,
conditional on ϕ̂i, we infer factor shares γ̂i from researchers’ first order condition in fundraising
time, which we derive in Appendix B.1. For the chosen functional forms, this takes the intuitive
expression:

(7) γ̂i =
Bi

Bi +ϕiRi
= Bmin + Gi + ϕ̂iFi
Bmin + Gi + ϕ̂iFi + ϕ̂iRi

.

Equation (7) states that γi constitutes the weight of total funding over the total dollar-value of
inputs used in scientific activity, with the last term of the denominator being the dollar-valued
opportunity cost of research time relative to fundraising.

16For numerical stability, we constrain ϕ̂i ≥ 1.
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Finally, the optimality condition for total hours worked determines productivity α̂i as a function
of parameters, observed allocations, and ϕ̂i and γ̂i:

(8) ηi(1 − γ̂i)α̂
1−ηi
i (Bmin + Gi + ϕ̂iFi)(1−ηi)γ̂iR

(1−ηi)(1−γ̂i)−1
i = ψ(Hi −Di +D

ξi
i )
ζi ,

This equation holds exactly if Hi < Hmax. Therefore, Equations (6), (7), and (8) determine
individual attributes as functions of parameters and observed allocations for researchers with
positive fundraising time.

Unfortunately, for the group of researchers reporting zero fundraising time, we can neither
infer ϕ̂i from Equation (6), nor can we compute γ̂i.17 Therefore, we assume that ϕi and γi are
parametric polynomial functions of state variables, and we estimate these functions using the
other sub-sample of researchers with Fi > 0.18

Finally, given the estimates attributes ϕ̂i and γ̂i, the state variables, and the vector of common
parameters µ̃, we infer productivity beliefs α̂i through Equation (8).

Given estimates of individual attributes θ̂i = (α̂i, γ̂i, ϕ̂i) as functions of parameters µ̃ = (ω,ψ,δ),
calibrated values (Bmin,Hmax), and observed allocations, we estimate the vector µ̃ by general-
ized method of moments as:

(9) µ̂ = argmin
µ̃

L(µ̃) = argmin
µ̃

N
∑
i=1

4
∑
j=1
(Mi j − M̂i j(Si j, θ̂i(µi(µ̃,Ti)),µi(µ̃,Ti)))

2
,

where Mi j is researcher i’s answer to thought experiment j in the data and M̂i j is its model-
based counterpart, which is itself an implicit function of the vector of counterfactual states
Si, researcher’s type Ti, and of the estimand µ̃which determines individual attributes θ̂i and
individual-specific parameters µi.19 Parameter estimates µ̂ solve (9) conditional on parameter
restrictions specified in Section 3.1. Appendix B.3 provides additional details on the search
algorithm.

4. Survey Experiment

Here, we describe the thought experiments in the survey (Subsection 4.1) and how they connect
to the model (Subsection 4.2). We then report the distribution of responses and conduct tests

17The Lagrange multiplier λF,i is strictly positive and unknown.
18We use the following specifications: ϕi = exp{∑3p=1 βG,pG

p
i +∑

3
p=1 βD,pD

p
i +∑

3
p=1 βM,pM

p
i }, and γi =

(1 + exp{∑3p=1 ιG,pG
p
i +∑

3
p=1 ιD,pD

p
i +∑

3
p=1 ιM,pM

p
i })

−1
, which we estimate using poisson and logistic regressions.

Whenever the fitted (ϕ̂i, γ̂i) combination would imply, given the observed state variables and for a specific vector of
parameters µi, that the optimal (observed) time allocation to fundraising would be strictly positive, we re-scale ϕ̂i
below the individual-specific lower bound below which the optimal fundraising time at observed states is indeed
null.

19To save notation, we omit that M̂i j are also a function of calibrated (Bmin,Hmax).
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for face validity, sample selection, and other potential concerns (Subsection 4.3).

4.1. SolicitingWillingness to Pay

WTP for Funding and Time. Respondents are presented with four hypothetical scenarios, each
offering different trade-offs between salary and inputs. They are asked to imagine that their
primary institution has offered them: (i) an increase of $250,000 in guaranteed funding in
exchange for a lower salary, (ii) an increase of $1,000,000 in guaranteed funding in exchange for
a lower salary, (iii) an elimination of all administrative duties in exchange for a lower salary, and
(iv) an increase in duties by 20 hours per month over a 5-year period in exchange for a higher
salary.20 All of these hypotheticals are posed over a 5-year span to fix the time horizon for all
respondents. In order to solicit the salary at which they are indifferent between the current
position and each offer, respondents are asked to report the lowest offered salary at which they
would be willing to accept the offer.21 Importantly, the survey only solicits researchers’ WTP for
more funding. This matters because counterfactual reallocations will involve reducing some
researchers’ funding. In the case of time, the survey solicits both WTP (for more free time) and
willingness to accept (WTA; for less free time) and we treat these as symmetric (after filtered
through the model of the production function). Appendix Figure C1 displays examples of how
these thought experiments appeared to the survey respondents.

WTP for a Benchmark Good. When soliciting willingness to pay, especially in an un-incentivized
manner, it is always possible that respondents under- or overstate their price sensitivity. In
order to test for this, we follow Dizon-Ross and Jayachandran (2022) and explore respondents’
willingness to pay for a “benchmark good.” Dizon-Ross and Jayachandran (2022) note that, if
one solicits a subject’s willingness to pay for a good whose value (to the subject) is plausibly
uncorrelated with the value of the focal good, then any correlation between the two willingness-
to-pay values can be attributed to systematic noise. The survey asks respondents to report the
maximum amount they would be willing to pay per month for high-speed internet access at
their primary residence. We use this as our benchmark good since it is plausibly uncorrelated
with productivity but of non-zero value to most respondents. In Appendix Table C1, we show
that respondents’ stated WTP for research funding and free time are rarely correlated with their
stated WTP, which suggests a small amount of variation in researchers’ answers is attributable
to systematic noise.
20Researchers who report no administrative duties are not shown scenario (iii).
21Pilot tests indicated that researchers could more easily report the lowest salary that could make them take the

offer as opposed to the literal salary at indifference, and since indifference is a vanishingly small amount less than
this reported value, we treat their answer as the amount at indifference.
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4.2. Connection to Model: WTP and Compensating Variation

Four survey thought experiments elicit the compensating variation of individual researchers
in relation to (i) an increase of $250,000 in guaranteed funding Gi, (ii) an increase of $1,000,000
in guaranteed funding Gi, (iii) a reduction of duties Di to 0, and (iv) an increase in duties
by 20 hours per month over a 5-year period. In other words, we ask for income levels M̂i j,
where j = {1, 2, 3, 4} indexes the four experiments, that would make the researcher’s utility in
the counterfactual scenario equal to their indirect utility V∗i at current allocations. Formally,
counterfactual guaranteed funding and duties in the four experiments are:

(G̃i1 , D̃i1) = ((Gi + $250,000) ,Di)
(G̃i2 , D̃i2) = ((Gi + $1,000,000) ,Di)
(G̃i3 , D̃i3) = (Gi , 0)
(G̃i4 , D̃i4) = (Gi , (Di + 20 hours/month)) ,

where Gi and Di represent actual states.

As noted above, the values of M̂i j reported in these four experiments make the researcher
indifferent between all possibilities (per Eq. 4), and therefore we can write these reported values
to be a known function of observable data and the unknown parameters to be estimated (per
Eq. 5).

4.3. Survey Experiment Results

Figure 1 plots the distribution of WTP for guaranteed research funding and free time (in the
form of WTP for less duties or WTA for more duties). The values shown are averaged over the
two thought experiments for either factor and converted to a per-dollar basis. As evidenced
by Figure 1, there is considerable variation in WTP responses across researchers. Some of this
variation reflects different preferences and constraints, but some also reflects heterogeneous
productivity across researchers. The model described above allows us to separate these two
forces.

Validating these WTP responses is a difficult but important task. They are the key ingredient of
our entire exercise, but they may be driven in part by sample selection effects or behavioral
biases or noise due to a simple lack of effort on the part of respondents. Although these are
practical trade-offs that professors face throughout their careers, systematic data has not been
collected in this way before to our knowledge. Thus, it is not clear what plausible variation
would look like here. Still, we can conduct some tests motivated by economic and statistical
theory to explore how reasonable these distributions of WTP are.

Motivated by the notion of opportunity costs, we test howWTP varies with researchers’ implied
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hourly wage (per their annual salary divided by their total hours of work). Assuming this implied
wage rate is a proxy for researchers’ opportunity costs, it should be the case that researchers
with higher hourly wages are willing to pay more for their free time. In Appendix Figure C2A,
we see that this is indeed the case. Furthermore, it should be the case that, conditional on
opportunity costs of time, researchers who expect to spend more time fundraising should have
a higher WTP for guaranteed funding. In Appendix Figure C2B, we find this to be true.

As another test of the WTP estimates, Appendix Tables C1 and C2 report a series of analyses
wherewe regress researchers’WTP responses on the state and choice variables of themodel, and
possibly also (i) the large vector of observable features describing each researcher (Xi), (ii) an
inverse Mills ratio constructed using the randomized survey participation incentives following
Heckman (1979), and/or (iii) the researchers’ WTP for the benchmark good (high-speed internet)
following Dizon-Ross and Jayachandran (2022).

We find the variables of the model can explain 80–90% of the variation in WTP responses
(see Appendix Table C1). This supports the model’s ingredients as being key determinants of
researchers’ answers. Secondly, we find that the inverseMills ratio is not a statistically significant
predictor of responses (see Appendix Table C1). Under the assumptions outlined in Heckman
(1979), this supports the notion that respondents did not differentially select into our sample as
a function of their WTP for inputs and suggests some generalizability of our responses. Finally,
we find that researchers’ WTP for the benchmark good (high-speed internet at their house) is
correlated with their WTP for inputs. Under the assumption that researchers’ demand for home
internet is truly uncorrelated with their productivity, this provides some evidence of systematic
noise in how respondents are reporting their WTP in these experiments. But, the magnitudes
of this relationship are quite small and the benchmark good WTP is included in our vector
of features we use to make the researcher type index (that determines heterogeneity in the
consumptionparameters),which gives us some confidence that this systematic noise is small and
the model will adjust for it to some degree. Overall, despite being un-incentivized experiments,
researchers’ responses appear to behave as expected and be of plausible magnitudes.

5. Estimates for the Model of Science

5.1. A View of Researchers’ Utility Functions

The common parameter estimates for the model are reported in Appendix Table D1. Appendix
Figure D1 illustrates the model’s fit by comparing the distribution of researchers’ responses with
the model’s predictions and errors. As evidence of fit, the median absolute difference between a
researcher’s stated WTP and the model’s prediction ranges from 6–12 percentage points across
the four questions.

To illustrate the utility function in a more intuitive way, Figure 2 shows how an average re-
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searcher’s utility depends on the levels of the three state variables (i.e., salary, administrative
duties, guaranteed research funding) and research output. The figure shows the percent change
in a researcher’s utility levels as the variable is increased from the 10th percentile level to the
90th percentile level while all other variables and parameters are held fixed at the sample
averages.22

In terms of magnitude, salary and administrative duties are the most important to researchers’
utility. Shifting the average researcher’s salary from the 10th percentile to the 90th percentile
increases their utility by roughly 60%. An equivalent relative increase in administrative duties
reduces utility by about 20%. In contrast, similarly scaled increases in guaranteed funding or
research output raise utility by only a few percentage points.

5.2. Productivity Distributions

Figure 3 shows the unconditional distributions of the production function parameters γi (fund-
ing intensity) and αi (TFP). Figure 3A displays the distribution of the γi parameter, which
describes the relative weight of funding versus research time in researchers’ production func-
tions. The distribution highlights a significant degree of heterogeneity across researchers, with
roughly 20% of our sample having a funding intensity either larger than 0.6 or smaller than
0.2.

As both an interesting exercise and test of face validity, Appendix Figure D2 plots the average
funding intensity parameters (γi) for the twenty minor fields represented in the sample. We find
γi is highest in chemistry and engineering, where research is often capital intensive and involves
the use of expensive lab equipment. In contrast, and in line with intuition, the social sciences
(e.g., economics, political science) display the lowest funding intensity on average. Notably,
Appendix Figure D2 highlights the heterogeneity in funding intensity across researchers even
within these narrower fields of study.

Figure 3B displays the distribution of the αi parameter, our measure of researchers’ TFP. Our
estimates reveal a large skew in researchers’ beliefs about their productivity.

As one test of face validity, Appendix Table D2 reports regression results that test for associations
between researchers’ productivity (αi) and their performance per traditionalmetrics of scientific
productivity, which are often more simply just output levels (e.g., publications, citations). Under
some reasonable assumptions, we expect a positive association between these metrics, and
we find it. Researchers with higher productivity beliefs are more likely to have more actual
publication output whether that output is measured using recent publication counts or citation-
weighted counts. This provides a signal that our estimates do in fact reflect real productivity
differences across researchers.
22For simplicity, behavioral responses where researchers re-optimize are not incorporated into Figure 2.

17



To understand how variation in TFP affects output, we decompose the variance in log output
into components attributable to TFP, input levels, and factor intensity. Note that the variance in
log output due to the variance in log TFP is given by: Var(log(αi)) + 2Cov(log(αi) , γi log(Bi)) +
2Cov(log(αi) , (1 − γi) log(Ri)). Using this relationship we estimate that 46% of the variance in
output across researchers is due to the variance in TFP. Without adjusting for the covariances
between TFP and the input levels and funding intensity parameter, we obtain an estimate of 80%.
This finding indicates that more productive researchers obtain more inputs that are well-suited
to their production functions, and it motivates questions related to allocative efficiency that we
return to in the next section.

To get some sense as to the (private) value of these productivity differences, Appendix Figure D4
shows the results of an exercise where we solve for researchers’WTP for productivity differences
based on their willingness to trade utility from salary for utility from productivity. This allows
for a comparison in dollar equivalents. Per this conversion, this heterogeneity in productivity
appears economically meaningful, as researchers are often willing to pay thousands of dollars
per year for higher productivity.

While Figure 3B shows a substantial degree of heterogeneity, some fraction of this variation
may be due to differences in the demand for their output or the nature of science within their
fields of study; for a similar reason, most studies on the industrial organization of firms report
productivity distributions based only on within-industry variation. Thus, Figure 4 shows the
distribution of researcher productivity (αi) after various controls for field-specific (or “industry-
specific”) variation are introduced.

First, Figure 4 shows the raw distribution of productivity levels, which mirrors the distribution
shown in Figure 3B but now on a logarithmic scale. Next, we regress researchers’ TFP estimates
on a set of major-field fixed effects, and we report the distribution of residual productivity
levels. Lastly, we also condition productivity on the full vector of covariates used to generate the
researcher type index.

Figure 4 also reports ratio of the 90th and 10th percentiles, the “90–10 TFP ratio” measure of
variance commonly reported in traditional, firm-level studies. The 90–10 TFP ratio of the raw
productivity estimates is substantial, but, even after conditioning on the additional controls, we
still find a large dispersion. The 90th percentile researcher believes they are roughly 30-times as
productive as the 10th percentile researcher.

It is difficult to benchmark this dispersion. Firm-level estimates are primarily frommanufac-
turing sectors, which typically involve 90–10 TFP ratios on the scale of 1× to 5× (Syverson 2011).
Worker-level productivity estimates tend to be similarly dispersed (Hoffman and Stanton 2024);
however, those estimates do not come from occupations as complex and creatively-oriented as
science. One notable example is Sackman, Erikson, andGrant (1968) who used direct observation
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to estimate software engineers’ productivity and found that some individuals were as much as
an order of magnitude faster on coding tasks than others. Interestingly, this is the same approxi-
mate scale that we identify with our sample of researchers.23 As another test of face validity,
Appendix Figure D3 plots the TFP distribution on the same scale as the field-normalized citation
distribution for the researchers in our sample that we can match to their publication records.
Notably, the 90–10 ratio for citations is 56, which is very similar to the dispersion we observe in
productivity. Overall, the degree of dispersion suggests substantial scope for misallocation. We
investigate this next.

6. Counterfactuals and Allocative Efficiency

6.1. Overview

In this section, we use our productivity estimates to analyze allocative efficiency through the
lens of our model. Specifically, we treat guaranteed funding (G) and duties (D) as policy levers a
planner can adjust to maximize a given objective. Importantly, we search for the allocations
of guaranteed funding and duties that maximize an objective after accounting for researchers’
endogenous behavioral responses to the planner’s decisions. The margins for behavioral re-
sponses are total hours worked, time spent fundraising (to obtain additional funds) and time
spent on research (to directly produce output). In reality, researchers may endogenously adjust
along many other margins (e.g., the types of projects they pursue), but these complexities are
beyond the scope of our model. Still, adjustments to time allocations are likely a first-order
response, and ignoring other margins allows us to keep the problem tractable.

We estimate optimal allocations given two different objectives. First, estimate the allocation that
maximizes total output. Second, we consider a utilitarian objective of maximizing researchers’
aggregate utility. To aid interpretation, we conduct an exercise where we estimate howmuch
total research funding must be increased using actual allocations to achieve the same growth in
scientific output that we are able to achieve using actual funding levels in alternative allocations.
Beyond this, we explore a range of alternative constraints on how inputs are reallocated to draw
broader conclusions about the gains from reallocation. Appendix B contains further details on
how we specify the optimization problems and constraints.

The externalities of science loom large in these counterfactuals. As noted, our approach assumes
all researchers’ production involves the same relative amount of externalities (per the common
parameter κ that multiplies their private value from output into social value). In practice, ex-
ternalities likely vary greatly across fields, which is why we primarily focus on reallocations
within the five major fields of researchers in our sample (i.e., Engineering, math and related;
Humanities and related; Medical and health sciences; Natural sciences; Social sciences).We also
23An interesting counter-example is Gabaix and Landier (2008) who estimate relatively small differences in talent

(in the value-added sense) among CEOs despite their substantial differences in compensation.
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report results where we condition researchers’ actual and counterfactual outcomes (i.e., output,
utility) on the large vector of covariates used in the researcher type index. This approach allows
us to isolate gains from reallocation between researchers with similar observable features.

6.2. Summary of Counterfactuals

Table 3 details the changes we estimate after reallocating inputs to maximize total output (Cols.
2–3) or researchers’ total utility (Cols. 4–5); Column (1) describes the actual allocation of inputs
for reference. In all cases of Table 3, we hold the total amount of funding in each major field
fixed, we only reallocate within fields, and social value is evaluated where κ = 10 (implying that
scientists capture 10% of the value of their output). Given our limited ability to incorporate
heterogeneous preferences into the model, Columns (3) and (5) report changes in output and
welfare after removing variation in thosemetrics correlatedwith the covariates used to construct
the researcher type index.24

Input reallocation. The first four rows of Table 3 report how reallocation changes the equilib-
rium distribution of inputs. For these rows, Columns (2–3) are identical since they are based
on the same counterfactual and we do not include any controls for these statistics; likewise for
Columns (4–5). Compared to the status quo, the counterfactual allocations lead tomore research
time on average (approx. 20%), they increase the variance in research time (approx. 40%), and
they decrease the variance in research budgets (approx. –20%).

In the Appendix, we illustrate the actual and optimal input distributions as well as Lorenz
curves (see Figure D5) to show how more or less unequal the distributions are under actual
and optimal allocations. In general, the model opts to make the distribution of duties more
unequal, while the inequality of the distribution of guaranteed funding is relatively unchanged.
After researchers’ behavioral responses to these reallocations, there is not much change in the
inequality of the distribution of research time and total funding (see Figure D5). However, there
is significant reallocation of inputs across researchers (see Figure D6).

Gains from reallocations. Overall, the model suggests that there are large gains in output to be
had from alternative allocations. Whether the objective is to maximize output or researchers’
private utility, the new allocations yield roughly 130–160%more output. Given the changes in
research time, this translates into significant welfare gains on the scale of 3–4% for researchers’
and 5–15% for society. The finding that both objectives yield qualitatively similar gains is primar-
ily driven by the fact that researchers have control over their time. Whatever the planner hopes
24In those cases, we regress researcher-level output or welfare metrics on the model variables and the full vector

of covariates used in the type index, and then we subtract out variation in the metric predicted by the covariates
conditional on the model variables. We include the model variables as controls because the productivity parameters
are (partially) determined by them and so we do not want to remove variation in outcomes due to productivity
differences.
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to maximize, the approach is to ensure that the most productive researchers are incentivized to
spend more time working on their science.

To contextualize these gains, we estimate how much more funding under actual allocations
would be necessary to achieve the same growth in scientific output that our counterfactual
allocations achieve using current funding levels. Table 4 reports these estimates under both a
“Mechanical” scenario that does not incorporate researchers’ behavioral response and a “Behav-
ioral” scenario that incorporates researchers’ responses. This exercise indicates that research
budgets would need to increase roughly 40% for the actual allocations to achieve the same
growth in output that we observe in the counterfactuals. On an annual basis this amounts to
roughly $55,000 per researcher. In aggregate, this sums to roughly $220 million per year in our
sample. Assuming there is no sample selection, this implies that the gains from a more efficient
allocation are equivalent to a funding increase of roughly $13 billion per year if we scale these
results from our sample to the entire population of researchers targeted by the survey.25

Additional results. In the appendix, we report results from counterfactual exercises using
alternative constraints and specifications (Tables D3 and D4). There are a few findings of note.
First, it appears that the allocation of duties is only meaningfully relevant for influencing
researchers’ utility, whereas the allocation of funding iswhat has themain influence on output.26

Another important result from these alternative scenarios is that allowing for reallocation across
major fields does not yield much additional output or value compared to the scenarios where
reallocation is constrained to occur only within major fields (as is done in the counterfactuals
reported in Table 3). This finding suggests that the degree ofmisallocationwithin fields is at least
as large within fields as it is across fields. Similarly, we do not see much gain from allowing the
total research budget to be unconstrained, and allowing only researchers’ fundraising decisions
to constrain the size of the budget. Interestingly, in this scenario, the total research budget
grows only about 15%. While we caution from interpreting this result too seriously, it suggests
that the total research budget is not far from the optimum given the (fixed) size of the research
workforce. Of course, this ignores dynamic concerns which may certainly be relevant.

6.3. InputWedges: Actual Versus Optimal

The results summarized thus far suggest that reallocating researchers’ time constraints and
funding can yield significant gains in output and welfare. In order to better understand how
these gains are achieved, we now focus on a single counterfactual specification and compare
the actual and optimized input levels. For simplicity, we focus for the remainder of this section
25For reference, total annual R&D spending at all US institutes of higher education was roughly $100 billion in

recent years (Gibbons and NCSES 2024).
26When only duties are reallocated, researchers’ utility increases by roughly 3%, but output only increases by

roughly 1%.When only funding is reallocated, researchers utility increases by only 1%, but output increases by 150%.
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on the scenario where duties and funding are jointly optimized to maximize output, which
corresponds to the counterfactual described in Columns (2–3) of Table 3.

To better understand how actual and optimal input levels correlate at the individual level, we
estimate a series of regressions of the following form:

(10) Actual Input Leveli = a +βOptimal Input Leveli + δZi + ϵi ,

which relates researchers’ actual and optimal input levels possibly conditioning on one (ormore)
covariate Z. If allocations were perfectly efficient, such a regression would yield an estimate
β̂ = 1 (with no standard error) since actual levels would equal optimal levels. If allocations are
not efficient, then β̂ < 1.

Focusing first on estimating Equation 10 with no covariates, Figure 5 reports estimates of
β on a binned scatterplot of the data. For both inputs, there is a clear positive relationship
between researchers’ actual and optimal levels. For every hour a researcher should commit to
research, they actually commit 0.3 hours on average. Interestingly, for every one dollar in total
funding the researcher should have, they actually have nearly one dollar (0.987) on average. The
figure also reports the mean absolute differences between actual and optimal levels, which are
approximately 10 hours of research time and $70,000 in funding. For reference, these values are
both roughly half the sample means.27

Appendix Figure D7 illustrates the same relationship between actual and optimal inputs, but
instead focuses on the policy levers which are allocated pre-behavioral response (i.e., adminis-
trative duties and guaranteed research funding). In contrast to Figure 5 , here we find effectively
no relationship between actual and optimal levels. Thus, while the optimum implied by the
model is an equilibrium allocation of inputs that is relatively similar to what is actually observed
on average, the model presents a very different way of achieving it.

Appendix Table D5 Column (1) replicates these univariate regressions, and then Columns (2–5)
include additional sets of covariates, which are all subsets of the vector of covariates used
in the researcher type index: researchers’ professional positions (e.g., rank, tenure status);
their subjective measures of their research output (i.e., as reported in Table 2); and their socio-
demographic features (e.g., age, gender, household structure).

Examining the R2 statistics reported in Table D5 Columns (2–5) as we include different sets of
covariates generally reveals small increases inR2 compared to Column (1). Atmost, the inclusion
of the full vector of covariates increases the R2 by 4–14 percentage points. We interpret this
pattern as indicating that misallocation using these sorts of observable features is a challenging
exercise, and that the degree of misspecification in the model (along these specific dimensions)
27Appendix Figure D8 shows the distribution of the researcher-level input wedges (actual minus optimal levels).
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is relatively small. The latter gives us confidence in our results, and the former has the interesting
implication that predicting which researchers are over- or under-resourced based only on their
observables may be a challenging exercise.

6.4. Case Studies of Potential Frictions

When estimating regressions of the form in Equation 10, it is important to be careful when
interpreting the δ coefficient. A covariate Z may be a significant predictor of actual levels
conditional on optimal levels (i.e., δ̂ ≠ 0) for two reasons: (i) the feature truly is a predictor of
misallocation as implied by the model, in which case a positive (negative) association indicates
that the feature is predictive of a researcher being over-resourced (under-resourced) due to a
friction; (ii) there ismisspecification in themodel and the feature describes some heterogeneous
preferences or demand variation that we have failed to capture, which has led to bias in our
productivity estimates. We cannot separate these two possibilities.

Here, we embrace the interpretation that our estimates of δ are indicative of a friction (and
not misspecification) only for two features for which misspecification is plausibly not a large
concern, but these results should still be interpreted cautiously.

First, we focus on a highly scrutinized feature: gender. A large body of work has documented a
wide range of biases and frictions facing female researchers when it comes to the acquisition
of inputs (or credit) for their science.28 But while the vast majority of this work rejects null
hypotheses and finds female researchers are under-resourced, they typically cannot formally
quantify how much female researchers are under-resourced. Our model and approach allow us
to do just that.

In Appendix Table D5, Columns (4–5) report the results from estimating regressions of the
form shown in Equation 10, where Zi is an indicator for researchers who self-report as female.
Whether we only include other socio-demographic covariates (Col. 4) or the full set of covariates
(Col. 5), we estimate a statistically significant negative association indicating female researchers
are under-resourced. They spend approximately 1 fewer hours on their research per week
and have roughly $10,000 less in total research funding annually. Both of these wedges are
approximately 10% of the sample mean.

Next, we focus on another question that has received much attention by meta-science scholars:
the Matthew effect. In general, the Matthew effect posits that researchers amass resources
beyond what their productivity warrants due to their social status (Merton (1968)). The specific
version of this effect that we can test for is the degree to which the use of grant dollars and
publication outcomes as productivity proxies distorts the allocation of inputs (e.g., Lee et al.
28See, for example, Bornmann, Mutz, and Daniel (2007); European Commission (2015); Van der Lee and Ellemers

(2015); Witteman et al. (2019); Kim and Moser (2021).
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2013; Penner et al. 2013; Gralka, Wohlrabe, and Bornmann 2019). Again, we run regressions of
the form shown in Equation 10, now including a vector variables describing researchers’ recent
grant funding and publication or citation output. As reported in Appendix Table D6, we find
some evidence of statistically significant distortions whereby a one standard deviation increase
in these traditional proxies leads to an over-resourcing on the scale of roughly 0.1–0.2 standard
deviations (approximately 5–10% relative to the sample means).

These two cases reveal statistically significant predictors of the input wedges that are plausibly
due to frictions in the allocation process. Researchers are more likely to be under-resourced
if they are female, and they are more likely to be over-resourced if their observable input and
output measures are higher. Still, the R2 statistics shown in Table D5 convey a seemingly novel
point—these observable features, which have received so much attention thus far, explain a very
small amount of the misallocation implied by the model. It appears difficult to use standard
observable features to predict which researchers are over or under-resourced.

6.5. Output Differences across Major Fields

Our final exercise seeks to understand the determinants of scientific output differences across
the major fields of researchers. Doing so takes a strong stance on the comparability of output
across fields, which is debatable. Thus, we treat this exercise as more speculative.

In general, the aggregate output of a market depends on input levels (i.e., the number of re-
searchers, their funding, and their time spent on research), productivity levels (i.e., researchers’
TFP), and the market’s allocative efficiency. Here, we explore the relative importance of these
three dimensions.

First, we divide all fields’ total output by the number of researchers in that field in order to
compare the per capita output only. Next, we use the field with the most output, Medicine, as
a benchmark and consider the other fields’ output in percentage terms relative to Medicine’s
actual total (per capita) output.

The gray bars in Figure 6 plot the total scientific output implied by the data and our productivity
estimates across the five major fields of study. The four comparison fields have aggregate output
levels that are roughly 25–75% that of Medicine.

Medicine is the most resourced field, in terms of research funding and time, so our first test is
to equate input levels across fields. In this case, aggregate output in the Social Sciences and the
Humanities more than doubles. But, except for the Social Sciences most of the gap in aggregate
output between each field and Medicine remains.

Average TFP levels across the fields are relatively similar such that equating productivity has
little impact on differences in aggregate output. In fact, the average TFP level in Medicine is
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slightly lower than that of all other fields, which may be related to the size of the field.

Lastly, we use our estimates of output from the counterfactual where wemaximize output within
each of the five major fields to estimate aggregate output gaps in the scenario where all fields
are equal in their allocative efficiency (i.e., it is maximized).29 Here, we see a reordering of
fields in terms of their per capita output. The Natural and Social sciences would produce more
output than Medicine, and the other two fields would rise to producing nearly 75% the output of
Medicine. In this sense, differences in allocative efficiency appears to be the most important
determinant of differences in aggregate output across fields of science.

We can only speculate as to why, based on our sample of medical researchers, the field of
medicine appears to be the best at allocating resources efficiently. One might think that med-
ical researchers spend more time engaged in fundraising efforts and that process facilitates
positive selection on productivity; however, medical researchers exhibit quite average levels of
fundraising effort.30

Appendix Figure D9 shows that our sample of medical researchers have a markedly different
distribution of duties (e.g., teaching, administration, clinical, etc.) than the other researchers
in our sample. The mean duty level is slightly lower relative to other fields, and the variance
is much larger. This sort of allocation is consistent with the logic of our model and results —
in a world with highly dispersed productivity, the planner should move non-research duties
on to as few, low productivity (in the scientific sense) researchers. Of course there are both
practical constraints and unmodeled objectives. For example, high-productivity researchers
could plausibly have the largest externalities from their other duties (e.g., teaching) and the
allocations we observe are balancing social value from research with social value from those
other duties. Further work on understanding across-field differences in allocation mechanisms
in science seems warranted.

7. Discussion

Our methodology allows us to estimate researchers’ productivity beliefs without observing
output quantities or input prices. With these estimates, we provide a novel view of productivity
and allocative efficiency in science. We find actual input allocations to be positively correlated
with those that maximize plausible objectives, but we also find large gains to be had frommore
efficient allocations. In the counterfactuals we explore, total scientific output per research-hour
or per research-dollar could be more than doubled.

Our model abstracts away from many important considerations that likely drive actual allo-
29Since this leads to output growth in all fields, we re-scale aggregate levels so that the level observed in the field

of Medicine remains the benchmark at 100%.
30The field-specific averages for fundraising hours per week are as follows: Engineering & Math = 6.1; Humanities

= 2.7; Medicine = 4.9; Natural sciences = 6.7; Social Sciences = 2.5.
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cations (e.g., dynamic returns), and our data is based on stated preferences. These and other
limitations of our approachmotivate us to interpret thesemagnitudes as plausible upper bounds
on the gains frommore efficient use of scientific inputs. These large potential gains provide a
glimmer of hope amid declining R&D productivity across most sectors of the economy (Bloom
et al. 2020) and the persistently growing burden of knowledge that raises the cost of conducting
frontier science (Jones 2009). Furthermore, our approach to identifying productive scientistsmay
prove useful in talent selection processes more generally (e.g., Agarwal and Gaule 2020).

Our approach has deep roots in the economics of labor (i.e., surveys of time use and work-
leisure trade-offs), industrial organization (i.e., production function estimation), marketing
(i.e., using surveys to identify demand functions), and macroeconomics (i.e., models of factor
misallocation). By drawing on insights from these fields, ourmethodology allows us to overcome
many of the challenges that have long plagued our understanding of productivity and efficiency
in science. However, this approach introduces new assumptions and challenges to grapple
with.

Our analyses reveal researchers’ beliefs about their productivity and therefore their beliefs about
how well inputs are allocated. This is a crucial limitation, since there are clearly many potential
biases affecting these beliefs. Still, science is inherently about forecasting uncertain outcomes,
and, therefore, the optimal mechanisms for identifying productive researchers and allocating
themmore inputs will need to tackle this challenge of engaging with researchers’ forecasts of
their productivity. Specifically, one important next step in this line of work will be to ensure
that the producers being studied report their willingness-to-pay for inputs truthfully. Of course,
the theoretical underpinnings of how to elicit true willingness-to-pay estimates have long
been established (Becker, DeGroot, and Marschak 1964). However, the magnitudes involved in
our setting involve trade-offs on the scale of tens or hundreds of thousands of dollars. Thus,
developing the practical details of incentivizing truthful responses from producers at this scale
would be a fruitful endeavor.

More broadly, our approach may prove useful in other settings that face similar challenges in
estimating productivity and efficiency. There are many markets populated by a large number of
producers acquiring inputs in a highly decentralized way to produce outputs that are not easy to
observe. For example, in developing economies, accurate producer-level data on outputs can be
difficult to obtain (e.g., Tybout 2000); in entrepreneurship, many organizations never produce
observable output before exiting (e.g., Decker et al. 2014); and in non-profit sectors, the output
may be so high-dimensional that reaching consensus on a suitable proxy is challenging (e.g.,
Philipson and Lakdawalla 2001). In each of these examples, our methodology could provide
a way forward to better understanding the distribution and determinants of productivity and
efficiency.
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Tables & Figures

TABLE 1
Summary Statistics—Salary, Funding, Time, and Fields

mean s.d. p50
Salary and research funds, $/year
Total salary 159,028.23 74,516.13 140,000.00
Guaranteed & existing funding 52,223.08 83,420.47 5,000.00
Fundraising expectations 93,909.19 144,013.69 20,000.00

Work time, hrs./week
Total work 48.55 10.00 48.00
Research 18.51 9.60 17.40
Fundraising 4.47 5.09 2.65
Administration 7.48 6.17 5.80
Teaching and other work 18.09 9.78 17.20

Major field, {0,1}
Engineering, math, & related 0.17 0.37
Humanities & related 0.19 0.39
Medical & health sciences 0.28 0.45
Natural sciences 0.16 0.37
Social sciences 0.21 0.40

Note: Reports summary statistics for 4,003 researcher-level observations. Unless otherwise noted, all variables are
continuous and bound below by zero. {0,1} indicates binary variables.
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TABLE 2
Summary Statistics—Subjective Output

mean s.d.
Intended research outputs, {0,1,2}
Journal articles 1.87 0.37
Books 0.52 0.68
Materials or methods 0.70 0.68
Products 0.47 0.64

Intended research audience, {0,1,2}
Academic peers 1.88 0.36
Policymakers 0.84 0.69
Businesses 0.54 0.62
General public 0.83 0.62

Riskiness of own research, [0,10]
Own belief 4.63 2.34
Belief of peers’ beliefs 4.57 2.37

Theoretical vs. empirical, [0,10]
Ask [0] or answer [10] questions 4.89 2.54

Note: Reports summary statistics for 4,003 researcher-level observations. The intended research outputs and audience
variables are coded responses to questions of the formHow often are the following the intended output / audience of your
research, where responses are coded as follows: Rarely=0, Sometimes=1, Very often=2. The question about risk used a
scale where 0 indicated no risk and 10 indicated very high risk. The question about theory versus empirics used a
scale where 0 indicated that the researcher focused on asking new questions and 10 indicated that the researcher
focsed on answering existing questions.
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FIGURE 1
Willingness to Pay Experiment Responses

A. WTP for +$1 Research Funding B. WTP for –1 hr. Administrative Duties

Note: Shows the distribution of researchers’ stated WTP for $1 more of additional research funds (Panel A) and 1
hour less of administrative duties (Panel B). Approximately 1% of the upper tails have been trimmed for visibility.
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FIGURE 2
Utility Function Visualization

A. Salary,M B. Administrative Duties, D

C. Guaranteed Research Budget, G D. Research Output, Y

Note: Shows the percent change in utility in four of the key model variables (Panels A–D) holding all other variables
and parameters fixed at the sample means. The black line (left y axis) shows the percent change in utility as the focal
variable increases from the 10th percentile to the 90th percentile. The histogram (right y axis) shows the distribution
of the focal variable in the sample. Note the different scales of all y axes.
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FIGURE 3
Production Function Parameters

A. Funding intensity, γ B. Scaled TFP, α

Note: Shows the distribution of researcher-specific estimates of the production function parameters γi (funding
intensity; Panel A) and αi (productivity; Panel B). In Panel (A, larger values indicate more funding intensity and
γ ∈ [0, 1]. In Panel (B), the top 5% of productivities have been trimmed for visibility and estimates are scaled into
units where the mean is normalized to equal 1 (with the 10th and 90th percentiles of the distribution noted on the x
axis).
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FIGURE 4
Conditional TFP Distributions

Note: Shows the distribution of researchers’ TFP (αi) where units have been rescaled so the mean equals 1; note the
log scale. In addition to (i) the distribution of the raw values, productivities are also shown after removing residual
variation due to (ii) major field fixed effects, and (iii) the covariates used to construct the researcher type index. 90-10
percentile ratios are also shown.

32



TABLE 3
Outcomes given Actual and Optimized Allocations

Current Optimized
allocation allocations

(1) (2) (3) (4) (5)
Research inputs
Research hrs./week, avg. 18.5 +27% +27% +14% +14%
Research hrs./week, s.d. 9.6 +43% +43% +43% +43%
Budget $-K/year, avg. 147.1 0% 0% 0% 0%
Budget $-K/year, s.d. 206.9 –18% –18% –20% –20%

Research output
Output, avg. n.r. +160% +140% +160% +130%
Output, s.d. n.r. –5.2% –7.9% –5.4% –5.7%
Output per hr. n.r. +100% +91% +130% +110%

Welfare
Researcher utility, avg. n.r. +4.5% +3.3% +4.7% +3.2%
Researcher utility, s.d. n.r. –5.2% –7.9% –5.4% –5.7%
Researcher utility per hr. n.r. +25% +24% +16% +15%

Social value, avg. n.r. +16% +5.7% +16% +5.2%
Social value, s.d. n.r. +21% –6.5% +20% –3.4%
Social value per hr. n.r. +34% +27% +26% +19%
Objective, max Y Y V V

Type controls ✓ ✓

Note: Reports summary statistics for inputs under actualallocations (Col. 1). The first three sets of rows in Columns
2–5 report the percentage change in research inputs (Research inputs), outputs (Research outputs), and utility (Welfare)
under alternative allocations; estimates are rounded to aid in comparison. The bottom sets of rows outline the
objective of the counterfactuals explored in Columns 2–5. The two different objectives explored are maximizing
output (Y ) or researchers’ private utility (V). Models with Type controls report output and welfare changes after
removing residual variation due to covariates used to construct the researcher type index. All optimized allocations
allow for researchers’ behavioral responses.
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FIGURE 5
Actual and Optimal Input Level Correlations

A. Research Time B. Total Research Funding

Note: Shows the binned scatterplot of actual and optimal input levels per an objective of maximizing output. Also
reports the coeffificient estimate from a regression of actual on optimal input levels and themean absolute difference
between actual and optimal input levels.
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TABLE 4
Growth in Funding with Actual Allocations Needed to Produce the Same Output

as Optimized Allocation of Actual Funding

Mechanical Behavioral
∆ Annual guaranteed funding, G
Sample average +$57K (109%) +$55K (105%)

∆ Annual total funding, B
Sample average +$57K (42%) +$55K (41%)
Sample total +$228M +$220M
Population total +$13.7B +$13.2B

Note: Reports the increase in guaranteed (G) and total (B) research funding under actual allocations necessary to
achieve the same growth in output achieved by the reallocation of actual input levels that maximizes researchers’
utility (+160%). Sample averages on a per-researcher basis are reported in addition to sample totals (summing over
all in-sample researchers) and implied population totals (scaling the sample up to the population size per the survey
response rate). TheMechanical scenario does not allow researchers to re-optimize their time allocations and the
Behavioral scenario does.
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FIGURE 6
Across Field Output Comparisons

Note: Shows the per capita scientific output of each major field benchmarked to the field with the most output,
Medicine. Actual output levels (in percentage terms relative to the benchmark) are shown alongisde counterfactual
output levels where all fields have the same average input levels per researcher, average productivity, and allocative
efficiency.
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Appendix A. Additional Survey Statistics and Comparisons

TABLE A1
Survey Completion per Randomized Treatments

(1)
Either incentive 0.00297∗∗

(0.00117)

Both incentives 0.00797∗∗∗

(0.00141)

1 reminder 0.0112∗∗∗

(0.00114)

2 reminders 0.0188∗∗∗

(0.00119)

Constant 0.0197∗∗∗

(0.00107)
N obs. 131,672

Note: Reports estimates from a regression of a binary indicator of survey completion on binary indicators for the
randomized incentives and reminders including observations for all researchers emailed. Robust standard errors
reported; ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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FIGURE A1
Sample Representativeness per Publication and Grant Funding Measures

A. Distribution Comparisons

B. Regression Comparisons

Pub., Pub. cites, Grant, Grant,
count normalized count total $
(1) (2) (3) (4)

Completed survey –0.111 –0.575 0.00878∗∗ –5568.8
(0.0688) (0.807) (0.00343) (8519.4)

Constant 2.906∗∗∗ 20.59∗∗∗ 0.117∗∗∗ 121272.4∗∗∗

(0.0158) (0.185) (0.000715) (2093.0)
% diff. –3.8% –2.8% 7.5% –4.6%
N obs. 87,000 87,000 87,000 87,000

Note: Panel (a) shows the distribution of publication and grant outcomes split by whether the researcher was emailed
(i.e., the full sample) versus those who completed the survey; note the log x axes. Panel (b) reports estimates from a
regression of each measure on a binary indicator for whether the researcher completed the survey;% diff. reports
this difference in percentage terms. Robust standard errors reported; ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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FIGURE A2
Sample Representativeness per Institutional Funding Measures

A. Distribution Comparisons

B. Regression Comparisons

All sources, by type All types, by source
All Federal Non–fed. Basic Applied Develop.
(1) (2) (3) (4) (5) (6)

Completed survey –35.01∗∗∗ –21.30∗∗∗ –13.71∗∗∗ –24.31∗∗∗ –7.170∗∗∗ –3.812∗∗∗

(6.953) (4.511) (3.062) (4.867) (2.492) (1.328)

Constant 649.1∗∗∗ 351.7∗∗∗ 297.4∗∗∗ 413.2∗∗∗ 176.7∗∗∗ 60.46∗∗∗

(1.308) (0.863) (0.578) (0.917) (0.459) (0.254)
% diff. –5.4% –6.1% –4.6% –5.9% –4.1% –6.3%
N obs. 130,785 130,785 130,785 130,785 130,735 128,169

Note: Panel (a) shows the distribution of institutional funding measures split by whether the researcher was emailed
(i.e., the full sample) versus those who completed the survey. Panel (b) reports estimates from a regression of each
measure on a binary indicator for whether the researcher completed the survey;% diff. reports this difference in
percentage terms. Robust standard errors reported; ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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TABLE A2
Distribution of Minor Fields of Study

share
Agriculture 0.02
Biology 0.05
Business 0.05
Chemistry 0.02
Communication 0.03
Computer science 0.02
Economics 0.02
Education 0.04
Engineering 0.06
Geography 0.05
Humanities 0.11
Law 0.02
Mathematics 0.03
Medical school 0.21
Medicine and health 0.07
Other social sciences 0.04
Physics 0.04
Political science 0.04
Psychology 0.04
Sociology 0.04

Note: Reports the share of 4,003 researcher-level observations in each minor field.
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FIGURE A3
Correlation of Self- and Publicly-reported Annual Salaries

Note: Shows the publicly- and self-reported annual salaries for 1,369 in-sample researchers whose salaries were
located in public reportings, and reports the pairwise correlation alongside the R2 statistic from a regression of
self-reported on publicly-reported salary.

FIGURE A4
Time Allocation Distributions

Note: Shows the distribution of researchers’ hours per week spent on four categories of work tasks.
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FIGURE A5
Research Funding Distributions by Major Fields of Study

Note: Shows the distribution of researchers’ total expected annual research budget (including guaranteed funds plus
fundraising expectations) split by the researchers’ major field of study; note the log scale.
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TABLE A3
Summary Statistics of Other Variables

mean s.d.
From HERD: Institution-level R&D
Total R&D, $M 611.32 451.18
R&D per researcher, $M 0.61 0.86
Share federal gov.’t R&D, [0,1] 0.52 0.12
Share basic R&D, [0,1] 0.63 0.20

From Dimensions: Research output
Publications per year 5.28 7.09
Citations per year 23.07 49.10
Co-authors per publication per year 9.09 68.40

Position details
Assistant professor, {0,1} 0.26 0.44
Associate professor, {0,1} 0.26 0.44
Full professor, {0,1} 0.41 0.49
Other rank, {0,1} 0.07 0.25
Not on tenure track, {0,1} 0.19 0.39
Pre-tenure, {0,1} 0.22 0.42
Tenured, {0,1} 0.58 0.49
Years until next contract eval. 3.68 1.82
Duration of contract 2.45 1.93

Note: Reports summary statistics for 4,003 researcher-level observations. From HERD indicates variables from
National Science Foundation (2023). From Dimensions indicates variables from the Digital Science (2018) dataset. N.R.
stands for Not Reported.
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TABLE A4
Summary Statistics of Other Variables (cont.’d)

mean s.d.
Gender identity, {0,1}
Female 0.40 0.49
Male 0.55 0.50
Other or N.R 0.05 0.22

Racial/ethnic identity, {0,1}
Asian 0.13 0.33
Black 0.03 0.18
Hispanic 0.06 0.23
White 0.77 0.42
Other or N.R 0.05 0.21

Citizenship, {0,1}
Citizen, domestic-born 0.71 0.45
Citizen or perm resident, foreign-born 0.24 0.43
Other or N.R citizenship 0.05 0.21
1st–3rd generation in U.S. 0.30 0.46
Other or N.R generation in U.S. 0.70 0.46

Other covariates
Age 48.78 12.05
Household total income 260,336.00 215,388.31
Married or domestic partnership, {0,1} 0.82 0.39
Single, {0,1} 0.13 0.34
Other or N.R relationship, {0,1} 0.05 0.22
Dependents in household 0.98 1.13
Risk-taking in personal life, [0,10] 5.26 2.13

Note: Reports summary statistics for 4,003 researcher-level observations. N.R. stands for Not Reported.

TABLE A5
Pairwise Correlations of Subjective Output Measures

Articles Books Methods Products Academic Policy Business Public
Articles
Books –0.13s

Methods 0.08s –0.20s

Products –0.13s –0.12s 0.23s

Academic 0.48s –0.01 0.02 –0.24s

Policy 0.01 –0.00 0.10s 0.25s –0.07s

Business –0.03 –0.07s 0.20s 0.38s –0.12s 0.24s

Public –0.12s 0.19s 0.04 0.21s –0.20s 0.28s 0.13s

Note: Reports pairwise correlations for the four subjective measures of researchers’ intended output types (Journal
articles; Books; Materials or Methods; Products) and the four subjective measures of researchers’ intended audiences
(Academic peers; Policymakers; Businesses and organizations; General public); s p < 0.01.
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Appendix B. Model Details

B.1. Derivation of Policy Functions

Thepolicy functionsR(Si,θi,µi),F(Si,θi,µi) andH(Si,θi,µi) characterize the solution (R∗i ,F
∗
i ,H

∗
i )

to problem (1) for each individual scientist i as a function of states Si, attributes θi, and parame-
ters µi. Moreover, they determine indirect utility V∗i = V(Si,θi,µi) at current allocations.

Once substituting the constraints, we can express the utility-maximization problem as

(B1) V(⋅, ⋅, ⋅) =max
Fi,Hi

U1i(Mi) +U2i(αi (Bmin + Gi +ϕiFi)
γi (Hi − Fi −Di)

1−γi) −U3i(Hi,Di)

with the policy functions F(⋅, ⋅, ⋅) andH(⋅, ⋅, ⋅) solving the optimality conditions:

∂U2,i(Yi)
∂Yi

∂Yi
∂Fi
+ λF,i = 0(B2)

∂U2,i(Yi)
∂Yi

∂Yi
∂Hi
−
∂U3,i(Hi,Di)

∂Hi
− λH,i = 0 ,(B3)

and R(⋅, ⋅, ⋅) being residually determined based on the time-constraint (1c).

We derive model’s policy functions describing how scientists’ optimal time allocation vary with
state variables and parameters. We start frommodel’s optimality conditions (B3) and (B3) and
evaluate them using the chosen functional forms described in the main text. We obtain the
conditions:

Y 1−ηii [γiϕi(Bmin + Gi +ϕiFi)−1 − (1 − γi)(Hi −Di − Fi)−1] + λF,i = 0(B4)

Y 1−ηii (Hi −Di − Fi)−1(1 − γi) −ψ(Hi −Di +D
ξi
i )
ζi − λH,i = 0 .(B5)

We characterize the policy functions in two intervals of Hi. The first is Hi ∈ (Di,Hi,F>0] and
the second is Hi ∈ (Hi,F>0,Hmax], depending on whether the optimal time allocation features
a corner solution for fundraising activity (Fi = 0) or an interior one (Fi > 0). We identify the
threshold Hi,F>0 below which the optimal fundraising time is zero by solving (B5) for Fi as a
function of Hi under the hypothesis that Fi is strictly positive, i.e., λF,i = 0:

(B6) Fi = γi(Hi −Di) −
1 − γi
ϕi
(Bmin + Gi) .
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Therefore, (B6) implies that fundraising time is strictly positive as long as:

(B7) Hi > Di +
1 − γi
γiϕi

(Bmin + Gi) ,

which identifies the threshold Hi,F>0, which is strictly larger than Di as long as γi < 1. As a
consequence, we can solve for optimal hoursHi using equation (B5), which takes the piece-wise
functional form:
(B8)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − γi)[αi(Bmin + Gi)γi]1−ηi(Hi −Di)(1−γi)(1−ηi)−1 −ψ(Hi −Di +D
ξi
i )
ζi − λH,i = 0 if Hi ≤ Hi,F>0

[αi(ϕiγi)γi(1 − γi)1−γi]
1−ηi(Hi −Di

Bmin+Gi
ϕi

)
−ηi −ψ(Hi −Di +D

ξi
i )
ζi − λH,i = 0 if Hi > Hi,F>0

and defines an implicit solutionHi for Hi as a function of all parameters and state variables.
Specifically, (B8) is continuous but not differentiable atHi,F>0.Moreover, the Lagrangemultiplier
λH,i equals zero forHi < Hmax . Finally, previous equation implies thatHi is always strictly larger
than Di because limHi→Di (B8) = +∞. Hence, the non-negativity constraint on research time is
always met.

Given the policy functionHi for hours, the functions defining optimal allocation to fundraising
time and research time can be derived as:

(B9) Fi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ifHi ≤ Hi,F>0
γi(Hi −Di) −

1−γi
ϕi
(Bmin + Gi) ifHi > Hi,F>0

and

(B10) Ri =Hi −Di − Fi .

B.2. Reducing Dimensions of Heterogeneity: k-means Clustering Results

B.3. Estimation Algorithm

We proceed to describe the estimation algorithm for the common parameters
µ̃ = (ω,ψ,δσ,0,δσ,1,δη,0,δη,1,δξ,0,δξ,1,δζ,0,δζ,1).

We first define a multi-dimensional grid of parameter values at which we perform a preliminary
evaluation of the loss function in problem (9). The grid is defined by the Cartesian product of
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FIGURE B1
Researcher Heterogeneity

Note: Shows the distribution of the log-transformed and standardized euclidean similarity scores from the k-means
cluster estimation with two k=I,II.
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TABLE B1
Comparison of k-means Clusters

mean I mean II mean diff.
Major field, {0,1}
Engineering, math, & related 0.17 0.17 0.00
Humanities & related 0.15 0.21 0.06∗∗∗

Medical & health sciences 0.35 0.24 –0.12∗∗∗

Natural sciences 0.13 0.17 0.04∗∗∗

Social sciences 0.20 0.21 0.02

Position details
Full professor {0,1} 0.05 0.61 0.57∗∗∗

Not tenure-track {0,1} 0.41 0.07 –0.33∗∗∗

Has tenure {0,1} 0.00 0.91 0.91∗∗∗

Socio-demographics
Age [30-80] 41.17 53.02 11.85∗∗∗

Female {0,1} 0.54 0.40 –0.14∗∗∗

Married {0,1} 0.78 0.84 0.06∗∗∗

Number dependents [0,5+] 0.99 0.98 –0.01
White race/ethnicity {0,1} 0.74 0.79 0.05∗∗∗

US-born {0,1} 0.73 0.70 –0.02∗

Personal risk-taking [0,10] 5.22 5.28 0.05
Rest-of-household earnings, (0,∞) 96.83 103.80 6.97
Intended research outputs, {0,1,2}
Journal articles 1.84 1.89 0.05∗∗∗

Books 0.39 0.59 0.20∗∗∗

Materials or methods 0.74 0.67 –0.07∗∗∗

Products 0.51 0.45 –0.06∗∗∗

Intended research audience, {0,1,2}
Academic peers 1.84 1.90 0.06∗∗∗

Policymakers 0.90 0.81 –0.09∗∗∗

Businesses 0.57 0.52 –0.05∗∗

General public 0.84 0.82 –0.02

Riskiness of own research, [0,10]
Own belief 4.28 4.82 0.54∗∗∗

Belief of peers’ beliefs 4.24 4.75 0.51∗∗∗

Theoretical vs. empirical, [0,10]
Ask [0] or answer [10] questions 5.17 4.74 –0.43∗∗∗

Note: Reports a t-test of the difference in means between the two predicted clusters following the k-means cluster
estimation with k=2; ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.

51



the following vectors:

ω(0) = [0.1, 1, 10]
ψ(0) = [0.00001, 1, 10]

δ
(0)
σ,0 = [−100, 0]

δ
(0)
σ,1 = [0]

δ
(0)
η,0 = [ln(0.8) − ln(0.2), 0, ln(0.2 − ln(0.8)]

δ
(0)
η,1 = [0]

δ
(0)
ξ,0 = [−11.5, ln(2)]

δ
(0)
ξ,1 = [0]

δ
(0)
ζ,0 = [−11.5, 0]

δ
(0)
ζ,1 = [0]

thus including 216 grid-points.

Secondly, we select the grid-points where the value of the loss function is within 0.5% of the
identified minimum value and we use them as initial points for the numerical solution to
problem (9). We perform a preliminary search using a “Nelder-Mead simplex direct search”
method with a high tolerance on the loss function and standard tolerance on parameter values.
We then select the parameters vectors where the value of the loss function is within 1% of
the identified minimum value and we use them as initial points for the numerical solution to
problem (9) with the same search algorithm and with lower loss function tolerance. We repeat
this step twice until we are left with a single candidate optimal parameter vector.

B.4. Objectives and Constraints for Counterfactuals

We first analyze a setting where social planner’s objective is to maximize field-specific aggregate
scientist’s utility, i.e., the sum of field- f scientists’ individual utility, by reallocating guaranteed
funding Gi and administrative duties Di within the field, conditional on their total amounts and
the total value of additional funding being fixed to the observed endowments.

To this end, we define the output function

Yi(G̃i, D̃i,π f ) = αi (Bmin + Gi +ϕiF(G̃i, D̃i,π f ))
γi
R(G̃i, D̃i,π f )1−γi

where the adjustment factor π f to fundraising ability in field f enforces the constraint that
additional funding in the new, counterfactual allocation must be equal to observed additional
funding. For convenience, in this section we omit from the notation the dependence of the
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policy functions on attributes θ̂i and parameters µ̂i.

Therefore, the problem in field f is:

(B11)

max
(G̃i,D̃i)

N f
i=1

N f

∑
i=1
(κ

Yi(G̃i, D̃i,π f )1−ηi
1 − ηi

−ψ
(Hi(G̃i, D̃i,π f ) − D̃i + D̃

ξi
i )

1+ζi

1 + ζi
)

subject to
N f

∑
i=1
G̃i = Ĝtot [Multiplier λG, f ]

N f

∑
i=1
D̃i = D̂tot [Multiplier λD, f ]

N f

∑
i=1
EGi = π f

N f

∑
i=1
ϕ̂iFi(G̃i, D̃i,π f ) ,

where N f is the number of scientists in field f . We also impose non-negativity constraints on

individual G̃i and D̃i allocations. The individual research output function Yi = α̂iB
γ̂i
i R

1−γ̂i
i and

hoursHi make explicit that both are functions of the considered instruments (G̃i, D̃i). The last
constraint requires that total additional funding in the observed allocations, i.e., the term on
the left hand side, equals additional funding in the optimal allocations conditional on the field-
specific adjustment factor π f . Therefore, all the policy functions—i.e., researchers’ behavioral
responses to the planner’s decisions—not only vary with policy levers (G̃i, D̃i) but also with π f ,
which can be interpreted as an endogenous adjustment to fundraising probability. When the
new allocation violates the constraint, fundraising probability uniformly shrinks, thus reducing
additional funding both directly and indirectly through the behavioral decline in fundraising
hours.

In the optimal allocations, the planner seeks to equate themarginal utility of guaranteed funding
and duties across individuals, conditional on the non-negativity constraint not being hit and the
additional funding constraint being met. Therefore, the solution of the problem solves, for each
i = 1, ...,N f the following equations:

dVi
dG̃i
= κY−ηii

dYi
dG̃i
−ψ(Hi − D̃i + D̃

ξi
i )
ζi ∂Hi
∂G̃i
= λG, f − λG∗,i(B12)

dVi
dD̃i
= κY−ηii

dYi
dD̃i
−ψ(Hi − D̃i +D

ξi
i )
ζi(∂Hi

∂D̃i
− 1 + ξiD̃

ξi−1
i ) = λD, f − λD∗,i ,(B13)

where the marginal product of guaranteed funds dYi
dG̃i

and the (negative) marginal product of
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duties dYi
dD̃i

are determined by equations (B14) and (B15), respectively:

dYi
dGi
= α̂iB

γ̂i
i R

1−γ̂i
i (γ̂iB−1i

∂Bi
∂G̃i
+ (1 − γ̂i)R−1i

∂Ri
∂G̃i
)(B14)

dYi
dDi
= α̂iB

γ̂i
i R

1−γ̂i
i (γ̂iB−1i

∂Bi
∂D̃i
+ (1 − γ̂i)R−1i

∂Ri
∂D̃i
) .(B15)

Total funding as a functionof state variables is definedbyBi(Gi,Di,π f ) = Bmin+Gi+π f ϕ̂iFi(Gi,Di,π f ).
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Appendix C. Additional Experiment Details

FIGURE C1
Example Image of Survey Experiment

Note: Shows a screenshot of the survey experiment designed to solicit researchers’ willingness to trade off their
salary for additional guaranteed funding.

55



FIGURE C2
Correlations of Implied Valuations

A. Less Administrative Duties B. More Research Funding

Note: Shows a binned scatterplot and line-of-fit for the relationship between researchers’ implied hourly wage and
their willingness to pay for 1 less hour of administrative duties (Panel A), and the relationship between howmany
hours per week a researcher spends on fundraising and their willingness to pay for $1 more of additional research
funds conditional on their implied hourly wage (Panel B).

TABLE C1
Proportion of Response Variation Correlated with Model and Non-model Variables

WTP +$250K WTP +$1M WTP +admin. WTP –admin.
(1) (2) (3) (4) (5) (6) (7) (8)

R2 0.95 0.96 0.87 0.89 0.82 0.86 0.96 0.97

Model vars. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
X ✓ ✓ ✓ ✓
N obs. 4,003 4,003 4,003 4,003 4,003 4,003 4,003 4,003

Note: Reports the R2 statistics from regressions of researchers’ responses to the four experiments (i.e., their willing-
ness to pay for the alternative scenarios) on different combinations of variables:Model vars. includes the state and
choice variables of the model; X includes the full vector of variables that comprise the type index.
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TABLE C2
Potential Role of Non-response Bias and Stated Preference WTP Bias

WTP +$250K WTP +$1M WTP +admin. WTP –admin.
(1) (2) (3) (4) (5) (6) (7) (8)

IMR –0.000858 –0.00391 –0.00466 –0.000835
(0.00379) (0.00593) (0.00684) (0.00327)

Benchmark –0.0126∗∗∗ –0.0258∗∗∗ 0.0134∗ –0.0102∗∗∗

(0.00411) (0.00644) (0.00742) (0.00355)
R2 0.95 0.95 0.87 0.87 0.82 0.82 0.96 0.96
Model vars. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
N obs. 4,003 4,003 4,003 4,003 4,003 4,003 4,003 4,003

Note: Reports the estimates from regressions of researchers’ responses to the four experiments (i.e., their willingness
to pay for the alternative scenarios) on a control for non-response bias in the form of the Inverse Mills Ratio (IMR)
and a control for bias in individuals’ stated WTP in the form of their WTP for the benchmark good (i.e., high-speed
internet at home); all variables are standardized.Model vars. includes the state and choice variables of the model.
Robust standard errors reported; ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Appendix D. Additional Productivity and Efficiency Results

TABLE D1
Utility Function Parameter Estimates

mean s.d. p10 p50 p90
ω 4.2e-04
σi 1.835 0.0338 1.795 1.831 1.882
ηi 0.257 0.0303 0.2217 0.2529 0.2994
ψ 5.9e-15
ξi 1.428 0.0484 1.36 1.432 1.487
ζi 3.9e-06 4.0e-07 3.4e-06 3.9e-06 4.4e-06

Note: Reports summary statistics for the parameter estimates; if only means are reported, the parameter is assumed
to be homogeneous. Parameter definitions are as follows:

parameter component
ω utility from income
σ utility from income, curvature
η utility from output, curvature
ψ disutility from total work time
ξ disutility from admin., teaching, and other, add.’l curvature
ζ disutility from total work time, curvature
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FIGURE D1
Model Fit

A. Answer, Prediction, and Error Distributions

B. Distributions of Question-specific Errors

p10 p25 p50 p75 p90
G +$250,000 0.11 0.88 6.18 15.54 29.58
G +$1,000,000 0.63 3.42 12.25 27.07 53.71
A +20 hr./month 2.19 5.56 11.40 21.01 35.66
A –all hr./month 0.26 2.41 6.17 12.75 22.01

Note: Panel (A) shows the distribution of researchers’ responses to the four experiments (i.e., their stated annual
salary at indifference) alongside the distribution of the model’s predictions and absolute errors. Panel (B) reports
summary statistics for the distribution of the absolute errors for each of the four experiments where the model’s
errors are expressed in percentage points of the actual responses.
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FIGURE D2
Research Funding Intensity (γ) by Minor Field of Study

Note: Shows the mean and standard deviations of researcher-specific estimates of the production function parameter
γi (funding intensity) split by minor field of study.

FIGURE D3
Productivity and Citation Distribution Comparison

Note: Shows the distribution of researchers’ TFP (αi) and their field-normalized citations, where both metrics have
been rescaled so the mean equals 1; note the log scale. 90-10 percentile ratios are also shown.
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FIGURE D4
Dollar Conversions of Research Productivity

A. Median WTP B. Mean WTP

Note: Shows the implied dollar value of productivity in terms of the median (Panel A) or mean (Panel B) of in-sample
researchers’ willingness to pay for a given productivity level, where productivity (x axis) is scaled so that the sample
mean equals one. For example, Panel (A) indicates that the median amount that researchers would be willing to pay
to have average productivity is approximately $1,000 per year. Note, negative values imply that researchers must be
paid to receive a given productivity level (because it is lower than their current productivity).

TABLE D2
Observable Output Correlations

Recent publications, Recent publications,
count cite-weighted

(1) (2) (3) (4)

log(α) 0.201∗∗∗ 0.176∗∗∗ 0.276∗∗∗ 0.254∗∗∗

(0.0406) (0.0397) (0.0648) (0.0648)

log(recent grant $) 0.0220∗∗∗ 0.0174∗∗∗

(0.00350) (0.00525)
Field–FE, γ,ϕ,X–index ✓ ✓ ✓ ✓
R2 0.18 0.20 0.15 0.16
N obs. 2,703 2,703 2,703 2,703

Note: Reports the estimates from regressions of researchers’ publication measures (including publications from
2018–2022) on their estimated research productivity (α) as well as vector of controls that includes major field fixed
effects (Field-FE) and the researchers’ funding intensity (γ), fundraising efficiency (ϕ), their type (X-index), and, in
some specifications, a control for their publicly observable research grant funding over the same period. Robust
standard errors reported; ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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FIGURE D5
Lorenz Curves for Actual and Optimal Input Levels

A. Administrative Duties B. Guaranteed Funding

C. Research Time D. Total Research Funding

Note: Shows Lorenz curves for actual and optimal input levels. Researchers are sorted on the x axis per their ranking
in terms of how much of each input they have, and the lines plot the cumulative share of total inputs (per the y axis)
summing from the lowest- to highest-ranked researcher. Thus, plots closer to the 45o line indicate input allocations
closer to equality.

62



FIGURE D6
Actual Versus Optimal Input Levels

A. Administrative Duties B. Guaranteed Funding

C. Research Time D. Total Research Funding

Note: Shows the distribution of actual and optimal input levels. Panels (a–b) show the distribution of the inputs
assumed to be directly under the planners’ control. Panels (c–d) show the distribution of inputs after researchers’
choose their time allocations in response to the planner.
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TABLE D3
Production with Actual and Optimized Allocations—Alternative Counterfactuals

Current Optimized
allocation allocations

(1) (2) (3) (4) (5) (6)
Research inputs
Research hrs./week, avg. 18.5 –11% +18% +14% +25% +16%
Research hrs./week, s.d. 9.6 +6.0% +18% +43% +39% +41%
Budget $-K/year, avg. 147.1 0% 0% 0% 0% +14%
Budget $-K/year, s.d. 206.9 +14% –24% –20% –20% –3.9%

Research output
Output, avg. n.r. +1.3% +150% +160% +160% +160%
Output, s.d. n.r. +0.7% +43% +44% +44% +44%
Output per hr. n.r. +14% +110% +130% +110% +120%
Output per $ n.r. +1.4% +150% +160% +160% +130%

Welfare
Researcher utility, avg. n.r. +3.6% +1.0% +4.7% +2.1% +4.7%
Researcher utility, s.d. n.r. –5.7% +0.3% –5.4% –2.4% –5.4%
Researcher utility per hr. n.r. –8.3% +16% +16% +21% +18%
Researcher utility per $ n.r. +3.6% +1.0% +4.8% +2.3% +16%
Social value, avg. n.r. +3.4% +12% +16% +13% +16%
Social value, s.d. n.r. –4.0% +23% +20% +21% +20%
Social value per hr. n.r. –8.5% +25% +26% +30% +28%
Social value per $ n.r. +3.4% +12% +16% +13% +26%

Input reallocation
Research hrs./week 9% 19% 27% 24% 25%
Budget $-K/year 14% 27% 28% 25% 25%
Objective, max V V V Y V

Reallocate D ✓ ✓ ✓ ✓
Reallocate G ✓ ✓ ✓ ✓
Unconstrained B ✓

Note: Reports summary statistics for inputs under actual allocations (Col. 1). The first three sets of rows in Columns
2–6 report the percentage change in research inputs (Research inputs), outputs (Research outputs), and utility (Welfare)
under alternative allocations; estimates are rounded to aid in comparison. The Input Reallocation rows report the
amount of inputs reallocated expressed as a percentage of the total level of the input (e.g., 50% implies that half of
all dollars are moved from one researcher to another). The bottom sets of rows outline the objective and constraints
of the five different counterfactual allocations explored in Columns 2–6. The two different objectives explored are
maximizing researchers’ private utility (V) or output (Y ). D refers to administrative duties, and G refers to guaranteed
research funding. Unconstrained B indicates the scenario when the total research budget is left unconstrained and
so the total amount of funding in the market is limited only by researchers’ fundraising choices. All optimized
allocations allow for researchers’ behavioral responses after D and/or G have been reallocated.
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TABLE D4
Production with Actual and Optimized Allocations—Alternative Specifications

Current Optimized
allocation allocations

(1) (2) (3) (4) (5)
Research inputs
Research hrs./week, avg. 18.5 +14% +30% +6.5% +14%
Research hrs./week, s.d. 9.6 +43% +60% +27% +44%
Budget $-K/year, avg. 147.1 0% 0% 0% 0%
Budget $-K/year, s.d. 206.9 –20% –22% –22% –24%

Research output
Output, avg. n.r. +160% +160% +250% +170%
Output, s.d. n.r. +44% +45% +180% +44%
Output per hr. n.r. +130% +100% +230% +130%

Welfare
Researcher utility, avg. n.r. +4.7% +4.8% +250% +4.8%
Researcher utility, s.d. n.r. –5.4% –5.1% +180% –5.5%
Researcher utility per hr. n.r. +16% +27% +230% +17%
Social value, avg. n.r. +16% +17% +250% +17%
Social value, s.d. n.r. +20% +20% +180% +20%
Social value per hr. n.r. +26% +36% +230% +27%

Input reallocation
Research hrs./week 27% 32% 27% 28%
Budget $-K/year 28% 28% 31% 31%
Absolute input cap ✓
Homog. param. ✓
Across-field B ✓

Note: Reports summary statistics for inputs and outcomes under actual allocations (Col. 1) and the utility-maximizing
allocation (Cols. 2–5). Column (2) reports the main results from our preferred specification. Columns (3–5) report
results under alternative specifications of the model and its estimation. Absolute input cap refers to the scenario
where researchers’ behavioral responses are limited with a global absolute maximum (as opposed to a relative
maximum in the preferred scenario). Homogeneous param. refers to the scenario where all non-production-function
parameters are homogeneous. Across field B allows for the reallocation of inputs across the five major fields of study
(which is not allowed in the preferred scenario).
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FIGURE D7
Actual Versus Optimal Input Correlations—Policy Levers

A. Administrative Duties B. Guaranteed Funding

Note: Shows the binned scatterplot of actual and optimal input levels per an objective of maximizing output. Also
reports the coeffificient estimate from a regression of actual on optimal input levels and themean absolute difference
between actual and optimal input levels. Based on the counterfactual described in Column (2) of Table 3.
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FIGURE D8
Input Wedge Distributions

A. Administrative Duties B. Guaranteed Funding

C. Research Time D. Total Research Funding

Note: Shows the distribution of the input wedge, which equals a researcher’s actual input level minus their optimal
input level; positive values indicate the researcher is over-resourced and negative values indicate the researcher is
under-resourced relative to the optimum.
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FIGURE D9
Teaching, Administration, Clinical and Other Duties by Major Field

Note: Shows the distribution of researchers’ hours per week spent on teaching, administration, clinical, or other
duties by major field.
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TABLE D5
Input Wedges and Gender Differences

(1) (2) (3) (4) (5)

Panel (a): Actual research time

Optimal level 0.301∗∗∗ 0.294∗∗∗ 0.300∗∗∗ 0.352∗∗∗ 0.349∗∗∗

(0.00970) (0.00989) (0.00991) (0.00985) (0.0102)

Female –1.333∗∗∗ –0.885∗∗∗

(0.286) (0.279)
R2 0.18 0.22 0.26 0.24 0.32
X: position ✓ ✓
X: output ✓ ✓
X: socio–demog. ✓ ✓
N obs. 4,003 4,003 4,003 4,003 4,003

Panel (b): Actual research funding

Optimal level 0.987∗∗∗ 0.982∗∗∗ 0.928∗∗∗ 0.985∗∗∗ 0.932∗∗∗

(0.00856) (0.00883) (0.0102) (0.00939) (0.0109)

Female –12111.4∗∗∗ –7907.5∗∗

(3950.8) (3872.1)
R2 0.65 0.65 0.67 0.67 0.69
X: position ✓ ✓
X: output ✓ ✓
X: socio–demog. ✓ ✓
N obs. 4,003 4,003 4,003 4,003 4,003

Note: Reports results from regressions of actual input levels on optimal input levels and as described in Equation 10.
Robust standard errors reported; ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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TABLE D6
Input Wedges per Common Productivity Proxies

(1) (2) (3) (4)

Panel (a): Actual research time

Optimal level 0.508∗∗∗ 0.506∗∗∗ 0.509∗∗∗ 0.508∗∗∗

(0.0164) (0.0166) (0.0162) (0.0163)

Recent research funding, own 0.130∗∗∗

(0.0311)

Recent research funding, institution –0.0137
(0.0139)

Recent publications 0.177∗∗∗

(0.0197)

Recent citations 0.148∗∗∗

(0.0223)
R2 0.32 0.30 0.33 0.32
X: position, output, socio–demog. ✓ ✓ ✓ ✓
N obs. 3,072 3,057 3,072 3,072

Panel (b): Actual research funding

Optimal level 0.746∗∗∗ 0.763∗∗∗ 0.744∗∗∗ 0.753∗∗∗

(0.0110) (0.00974) (0.0106) (0.0101)

Recent research funding, own 0.0767∗∗∗

(0.0264)

Recent research funding, institution 0.00202
(0.00958)

Recent publications 0.0760∗∗∗

(0.0153)

Recent citations 0.0592∗∗∗

(0.0142)
R2 0.70 0.69 0.69 0.69
X: position, output, socio–demog. ✓ ✓ ✓ ✓
N obs. 3,072 3,057 3,072 3,072

Note: Reports results from regressions of actual input levels on optimal input levels and common proxies for
researchers’ producitivities. All variables are standardized. All proxies are based on data from one to two years prior
to the survey. Robust standard errors reported; ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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